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Preliminaries

Kernel

Given a non-empty set X , κ : X × X −→ R is a kernel if:

• κ is symmetric: κ(x , y) = κ(y , x).

• κ is positive semi-definite, i.e., ∀x1, x2, ..., xn ∈ X , the “Gram
Matrix” K defined by Kij = κ(xi , xj) is positive semi-definite.

Properties:

• κ(x , x) ≥ 0.

• κ(u, v) ≤
√
κ(u, u) · κ(v , v) (Cauchy-Schwarz inequality).

∗ A matrix M ∈ Rn×n is positive semi-definite if ∀a ∈ Rn, a′Ma ≥ 0.
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Preliminaries

Kernel methods1:

Owe their name to the use of kernel functions, which enable them
to operate in a high-dimensional, implicit feature space without ever
computing the coordinates of the data in that space, but rather by
simply computing the inner products between the images of all pairs
of data in the feature space. This operation is often computationally
cheaper than the explicit computation of the coordinates.

Kernel methods can (and often do) use infinitely many features. This
can be achieved as long as our learning algorithms are defined in
terms of dot products between the features, where these dot products
can be computed in closed form. The term kernel simply refers to a
dot product between (possibly infinitely many) features.

1Wikipedia, https://en.wikipedia.org/wiki/Kernel method.
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Preliminaries

Inner product

Let F be a vector space over R. A function 〈·, ·〉F : F × F −→ R is
an inner product on F if:

• Linear: 〈α1f1 + α2f2, g〉F = α1〈f1, g〉F + α2〈f2, g〉F .

• Symmetric: 〈f , g〉F = 〈g , f 〉F .

• 〈f , f 〉F ≥ 0 and 〈f , f 〉F = 0 if and only if f = 0.

∗ Vector space with an inner product is said to be an inner product space.

∗ 〈f , g〉F = 0, ∀f ∈ F if and only if g = 0.

∗ 〈f , α1g1 + α2g2〉F = α1〈f , g1〉F + α2〈f , g2〉F .

Jianglin Lu (NEU) jianglinlu@outlook.com Domain Adaptation 6 / 58



Preliminaries

Norm

Norm induced by the inner product: ||x ||H :=
√
〈x , x〉H.

Normed space

A normed space is a linear (vector) space H in which a norm is defined.
A nonnegative function || · || is a norm iff ∀f , g ∈ H and α ∈ R:

• ||f || ≥ 0 and ||f || = 0 iff f = 0.

• ||f + g || ≤ ||f ||+ ||g ||.
• ||αf || = |α| ||f ||.
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Preliminaries

Kernel function

A kernel is a function κ that for all x , z ∈ X satisfies:

κ(x , z) = 〈φ(x), φ(z)〉, (1)

where φ is a mapping from X to an (inner product) feature space H:

φ : 7−→ φ(x) ∈ H. (2)

∗ Kernel functions2 make possible the use of feature spaces with an exponential or
even infinite number of dimensions.

∗ Compute the inner product between the projections of two points into the feature
space without explicitly evaluating their coordinates.

∗ The feature space is not uniquely determined by the kernel function.

2Taylor et al. Kernel Methods for Pattern Analysis, Cambridge University Press, 2004
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Preliminaries

Hilbert space

A Hilbert Space H is an inner product space that is complete and
separable with respect to the norm defined by the inner product:

||f ||H =
√
〈f , f 〉H, ∀f ∈ H (3)

∗ Hilbert spaces generalize the finite Euclidean spaces Rd , and are generally
infinite dimensional.

∗ Separability implies that Hilbert spaces have countable orthonormal bases.

∗ H is a complete space if every Cauchy sequence in H is convergent.
Informally, a space is complete if every (infinite) sequence of its elements
that approaches a particular value has this value as it’s limit and this limit
is in the space itself.
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Preliminaries

Cauchy sequence

A Cauchy sequence is a sequence (xi)
∞
i=0 such that for every real number

ε > 0 we can find a natural number N such that d(xn, xm) < ε whenever
n, m > N . Here, d is a distance metric on H.

∗ This basically says that we can take an arbitrarily small value for ε and are
guaranteed that after some point (N), all later values of x are no further
apart than ε.
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Preliminaries

Convergent sequence

A sequence is convergent in X if there is a point x ∈ X such that for
every real number ε > 0 we can find a natural number N such that
d(x , xn) < ε for all n > N .

∗ This says that for any convergent sequence, we can find some value x
that is in the original space that is arbitrarily close to xn for all n after a
certain point.
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Preliminaries

Reproducing property

The evaluation of f at x can be written as an inner product in feature
space:

∀x ∈ X ,∀f ∈ H, 〈f , κ(·, x)〉H = f (x) (4)
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Preliminaries

Reproducing kernel

Let H be a Hilbert space of R-valued functions defined on a non-empty
set X . A function κ : X × X −→ R is called a reproducing kernel of
H if it satisfies:

• ∀x ∈ X , κ(·, x) ∈ H.
(informally, the feature map of every point is in the feature space.)

• ∀x ∈ X ,∀f ∈ H, 〈f (·), κ(·, x)〉H = f (x)
(i.e., the reproducing property).

In particular, for any x , y ∈ X , κ(x , y) = 〈κ(·, x), κ(·, y)〉H.

∗ If it exists, reproducing kernel is unique.

∗ Reproducing kernels are positive definite.

∗ We can write φ(x) = κ(·, x) without ambiguity.
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Preliminaries

Evaluation functional

Let H be a Hilbert space of functions f : X −→ R, defined on a non-
empty set X . For a fixed x ∈ X , map δx : H −→ R, δx : f 7−→ f (x)
is called the evaluation functional at x (i.e., δx f = f (x)).

∗ Evaluation functionals are always linear: For f , g ∈ H and α, β ∈ R,
δx(αf + βg) = (αf + βg)(x) = αf (x) + βg(x) = αδx(f ) + βδx(g).
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Preliminaries

Reproducing Kernel Hilbert Space

A Hilbert space H of functions f : X −→ R, defined on a non-empty
set X is said to be a Reproducing Kernel Hilbert Space (RKHS) if δx
is bounded (continuous) ∀x ∈ X : there exists a corresponding λx ≥ 0
such that ∀f ∈ H, |f (x)| = |δx f | ≤ λx ||f ||H.

∗ If two functions converge in RKHS norm, then they converge at every
point, i.e., if limn→∞ ||fn − f ||H = 0, then limn→∞ fn(x) = f (x), ∀x ∈ X .

∗ H is a reproducing kernel Hilbert space iff H has a reproducing kernel.

∗ Given a RKHS H, we may define a unique reproducing kernel associated
with H, which is a positive definite function.
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Preliminaries

Reproducing Kernel Hilbert Space

Let X be a non-empty set andH be a Hilbert space of functions defined
on H.Then H is a Reproducing Kernel Hilbert Space (RKHS), if there
exists a bilinear form κ : X × X −→ R such that

• φ(x) = κ(x , ·), φ(x) : X −→ H is the feature map.

• ∀x ∈ X ,∀f ∈ H, 〈f (·), κ(·, x)〉H = f (x),

we call these the reproducing property of κ.

∗ We denote the RKHS H with reproducing kernel κ interchangeably by
Hκ = Hκ(X ). The correspondence of κ and Hκ is one-to-one.
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Preliminaries

Riesz representation

In a Hilbert space H, all bounded linear functionals are of the form
〈·, g〉H, for some g ∈ H.

Jianglin Lu (NEU) jianglinlu@outlook.com Domain Adaptation 17 / 58



Preliminaries

Moore-Aronszajn Theorem

Let X be a metric space, and k : X × X −→ R be a positive definite
function, there exists a unique Hilbert space (Hκ,〈·, ·〉Hκ) of functions
on X satisfying the followings:

• φ(x) = κ(x , ·) ∈ H, ∀x ∈ X .

• Span{φ(x) : x ∈ X} is dense in H,

• 〈f (·), φ(x)〉H = f (x), ∀x ∈ X ,∀f ∈ H.

∗ H is the unique RKHS with reproducing kernel κ (denoted by Hκ).

∗ Every RKHS has a unique positive definite kernel.

∗ Feature map is not unique, only kernel is unique.
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Preliminaries

Remark #1: Given any feature map φ(·) : X −→ H, we can define a
positive definite function κ(x , x ′) = 〈φ(x), φ(x ′)〉Hκ and a corresponding
RKHS.

Remark #2: For any RKHS with kernel κ (which is unique), we may define
the feature map to be φ(x) = κ(x , ·). This means that for data {xn}n∈N,
κ(x , x ′) can be computed directly without the evaluation of φ(x), φ(x ′) and
the inner product between them. This is known as the kernel method in
ML, which is really useful practically as many feature maps are of infinite
dimensions (e.g., Gaussian).
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Preliminaries

The mean, variance and covariance have their counterparts in the feature
space. In infinite dimensional RKHSs, they are defined as mean element,
covariance operator, and cross-covariance operator respectively.

Mean element

Assume X is a metric spaces, and X is a random variable supported
on X . The mean element in Hκ is defined as µX = EX [κ(X , ·)] ∈ Hκ

such that for any f ∈ Hκ:

〈f , µX 〉Hκ = EX [f (X )] (5)

∗ Existence of mean element: if κ is uniformly bounded (i.e.,
supx∈X κ(x , x) <∞), µX ∈ Hκ.
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Preliminaries

Cross-covariance operator

Assume Y is another metric spaces, and Y is a random variable sup-
ported on Y . Let Gh be another RKHS equipped with reproducing
kernel h. Let µX , µY be the two mean elements in Hκ and Gh, respec-
tively. Then the cross-covariance operator is defined as:

CXY = EXY [(κ(X , ·)− µX )⊗ (h(Y , ·)− µY )] , (6)

where for any f ∈ Hκ, g ∈ Gh,

〈f ,CXY g〉Hκ = EXY [〈κ(X , ·)− µX , f 〉Hκ〈h(Y , ·)− µY , g〉Gh ] ,

= EXY [(f (X )− EX [f ])(g(Y )− EY [g ])] .
(7)

Therefore, the (auto-)covariance operator is as followed

ΣX = CXX = EXX [(κ(X , ·)− µX )⊗ (κ(X , ·)− µX )] , (8)

Jianglin Lu (NEU) jianglinlu@outlook.com Domain Adaptation 21 / 58



Preliminaries

Universal kernel

A continuous kernel κ on a compact metric space (X , d) is called
universal if the space of all functions induced by κ is dense in C (X ),
i.e. for every function f ∈ C (X ) and every ε > 0 there exists a function
g induced by κ with

||f − g ||∞ ≤ ε (9)

∗ A metric d on X is a function d : X ×X −→ [0,∞) such that for all x , y , z ∈ X
we have d(x , y) = d(y , x) and d(x , z) ≤ d(x , z) + d(z , y) as well as d(x , y) = 0
if and only if x = y .

∗ C (X ) means the space of all continuous functions f : X −→ R on the compact

metric space (X , d) endowed with the usual supremum norm

||f ||∞ := supx∈X |f (x)|.
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Preliminaries

Characteristic kernel

Let (Ω,B) be a measurable space, let (H, κ) be an RKHS over Ω
with the kernel κ measurable and bounded, and let ξ be the set of all
probability measures on (Ω,B). The RKHS H is called characteristic
(with respect to B) if the map

ξ 3 P 7→ mP = EX∼P [κ(·,X )] ∈ H (10)

is one-to-one (injective), where mP is the mean element of the random
variable with law P .

∗ We also call a positive definite kernel κ characteristic if the associated RKHS is
characteristic.

∗ In other words, a characteristic kernel induces an RKHS that is sufficiently rich
in the sense that probability measures have unique images.
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Preliminaries

Isomorphisms

Given two fields F and G, we say that φ is an isomorphism between F
and G if φ is a function from F −→ G and φ obeys certain properties:

• Injective (one to one): ∀f , f ′ ∈ F , φ(f ) = φ(f ′) implies that
f = f ′ (i.e., there is at most one element in F which maps to a
single element in G ).

• Surjective (onto): ∀g ∈ G , there exists f ∈ F such that φ(f ) = g
(i.e., there is at least one element in F which maps to a single
element in G ). The combination of these first two properties states
that φ is a bijection.

• Preservation: basically, φ preserves operations. That is, for exam-
ple, φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).
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Hilbert Space Embedding for Distributions

Kernel Mean Embedding

Suppose that X = {x1, ..., xm} is drawn independently and identically
distributed from PX , we make the following two mappings:

µ[PX ] := EX [κ(x , ·)], µ[X ] :=
1

m

m∑
i=1

κ(xi , ·) (11)

By the reproducing property of H, we have:

〈µ[PX ], f 〉 = 〈EX [κ(x , ·)], f 〉 = EX [〈κ(x , ·), f 〉] = EX [f (x)]

〈µ[X ], f 〉 =
1

m

m∑
i=1

f (xi)
(12)

∗ If E[κ(x , x)] <∞, µ[PX ] is an element of the Hilbert space (i.e., probability

distributions can be represented as elements in an RKHS).
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Hilbert Space Embedding for Distributions

Kernel Mean Embedding

Theorem #1: If the kernel κ is universal, then the mean map µ :
PX −→ µ[PX ] is injective.

Theorem #2: Assume that ||f ||∞ ≤ R for all f ∈ H with ||f ||H ≤ 1.
Then with probability at least 1− δ, ||µ[PX ]−µ[X ]|| ≤ 2Rm(H,PX ) +

R
√
−m−1 log(δ).

∗ Theorem #1 means that µ[PX ] can be used to define the distances between
distributions PX and PY , simply by letting D(PX ,PY ) := ||µ[PX ]− µ[PY ]||.

∗ Theorem #2 means that we do not need to have access to actual distributions in
order to compute D(PX ,PY ) approximately—as long as Rm(H,PX ) = O(m−

1
2 ), a

finite sample from the distributions will yield error of O(m−
1
2 ).
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Background

Covariate shift / Sample selection bias

When the distributions on training and test sets do not match, we are
facing sample selection bias or covariate shift (i.e., P tr

X 6= P te
X , while

P tr
Y |X = P te

Y |X ).
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Sample Reweighting1

In general, a learning method minimizes the expected risk:

R[Ptr , θ, l(x , y ; θ)] = E(X ,Y )∼Ptr [l(x , y ; θ)] (13)

However, we would like to minimize R[Pte , θ, l(x , y ; θ)] as we wish to gener-
alize to test samples drawn from Pte . From the view of importance sampling,
we have

R[Pte , θ, l(x , y ; θ)] = E(X ,Y )∼Pte [l(x , y ; θ)]

= E(X ,Y )∼Ptr

[
Pte
XY

Ptr
XY

· l(x , y ; θ)

]
= R[Ptr , θ, β(x , y) · l(x , y ; θ)]

(14)

where β(x , y) , Pte
XY /Ptr

XY .

1Huang et al. Correcting Sample Selection Bias by Unlabeled Data, NIPS 2006.
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Motivation of Zhang et al2

We address the situation where both the marginal distribution PX and the condi-
tional distribution PY |X may change across the domains.

Three possible scenarios

• Target Shift (TarS): the marginal distribution PY changes, while the condi-
tional PX |Y stays the same.

• Conditional Shift (ConS): the marginal distribution PY is fixed, while
the conditional PX |Y changes. A practical case where PX |Y changes under
location-scale (LS) transformations on X .

• Generalized Target Shift (GeTarS): the marginal distribution PY changes,
and the conditional PX |Y changes. A practical case is LS-GeTarS where PX |Y
changes under LS transformations.

2Zhang et al. Domain Adaptation under Target and Conditional Shift, ICML 2013.
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Importance Reweighting

Assume the support of Pte
XY is contained by that of Ptr

XY . The expected loss
on test data is:

R[Pte , θ, l(x , y ; θ)] = E(X ,Y )∼Pte [l(x , y ; θ)]

=

∫
Ptr
XY ·

Pte
XY

Ptr
XY

· l(x , y ; θ)dxdy

= E(X ,Y )∼Ptr

[
Pte
Y

Ptr
Y

·
Pte
X |Y

Ptr
X |Y
· l(x , y ; θ)

]
= E(X ,Y )∼Ptr [β∗(y) · γ∗(x , y) · l(x , y ; θ)]

(15)

where β∗(y) , Pte
Y /Ptr

Y and γ∗(x , y) , Pte
X |Y /Ptr

X |Y .

∗ The support (or sample space) of a random variable is defined as the set of
numbers that are possible values of the random variable.

∗ Here, we factorize PXY as PY PX |Y instead of PXPY |X because it provides a more
convenient way to handle the change in PXY .
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Importance Reweighting

In practice, we minimize the empirical loss:

R̂ =
1

m

m∑
i=1

β∗(y tr
i )γ∗(x tr

i , y
tr
i )l(x tr

i , y
tr
i ; θ) (16)

if β∗(y tr
i )γ∗(x tr

i , y
tr
i ) are given.
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Sample Transformation and Reweighting

Drawback of sample reweighting: in the case where both PY and PX |Y
change, the application of sample reweighting scheme is rather limited.

Solution: find the transformation T such that the conditional distribu-
tion of X new = T (X tr ,Y tr ) satisfies Pnew

X |Y = P te
X |Y .

R[P te , θ, l(x , y ; θ)] = E(X ,Y )∼Pte [l(x , y ; θ)]

=

∫
P tr
Y · β∗(y) · P te

X |Y · l(x , y ; θ)dxdy

= E(X ,Y )∼Ptr
Y Pnew

X |Y
[β∗(y) · l(x , y ; θ)]

(17)

This empirical loss can be calculated on the transformed training points
xnew , y tr with wights β∗:

R̂[P te , θ, l(x , y ; θ)] =
1

m

m∑
i=1

β∗(y tr
i ) · l(xnew

i , y tr
i ; θ) (18)
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Correction for Target Shift (TarS, P te
X |Y = P tr

X |Y )

Assumptions:

ATarS
1 : P te

X |Y = P tr
X |Y and P te

Y = P tr
Y , i.e., γ∗(x , y) ≡ 1 (the difference

between P tr
XY and P te

XY ) is caused by a shift in target distribution PY .

ATarS
2 : The support of P te

Y is contained in the support of P tr
Y (i.e.,

roughly speaking, the training set is richer than the test set).

ATarS
3 : There exists only one possible distribution of Y that, together

with P tr
X |Y , leads to P te

X .

ATarS
4 : Product kernel kl on X ×Y is characteristic. (For characteristic

kernels, the kernel mean map µ from the space of distribution to the
RKHS is injective, meaning that all information of the distribution is
preserved.)
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Correction for Target Shift (TarS, P te
X |Y = P tr

X |Y )

We can draw a biased sample from the training data; here the selection
variable depends only on Y .

Denote by Pnew (·) the distribution on this sample. We can make Pnew
X

identical to P te
X by adjusting Pnew

Y (Pnew
X |Y = P tr

X |Y = P te
X |Y ).

Let Pnew
Y = β(y) · P tr

Y . To make Pnew
X identical to P te

X , we can adjust
β(y) to minimize

D(P te
X ,P

new
X ) = D(P te

X ,

∫
P tr
Y · β(y) · P te

X |Y dy) (19)

where D measures the difference between two distributions.
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Correction for Target Shift (TarS, P te
X |Y = P tr

X |Y )

A Kernel Mean Matching Approach:

Using kernel embedding of conditional as well as marginal distribu-
tions, the proposed approaches avoid distribution estimation, and are
applicable for high-dimensional problems.

Marginal distribution:

The kernel mean embedding of PX

is a point in the RKHS given by

µ[PX ] = EX∼PX
[ψ(X )] (20)

and its empirical estimate is

µ̂[PX ] =
1

m

m∑
i=1

ψ(xi) (21)

Conditional distribution:

The embedding of PX |Y can be con-
sidered as an operator mapping from
G to F , defined as

U [PX |Y ] = CXYC−1YY (22)

where CXY and CYY denote the (un-
centered) cross-covariance and co-
variance operators, respectively.
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Correction for Target Shift (TarS, P te
X |Y = P tr

X |Y )

The kernel mean embedding of Pnew
Y is

µ[Pnew
Y ] = EY∼Pnew

Y
[φ(Y )] = EY∼Ptr

Y
[β(y)φ(Y )] (23)

where D measures the difference between two distributions.
The embedding of Pnew

X is then given by µ[Pnew
X ] = U [P tr

X |Y ]µ[Pnew
Y ].

We can find β(y) by minimizing the maximum mean discrepancy:

||µ[Pnew
X ]− µ[P te

X ]|| =
∣∣∣∣U [P tr

X |Y ]µ[Pnew
Y ]− µ[P te

X ]
∣∣∣∣

=
∣∣∣∣U [P tr

X |Y ]EY∼Ptr
Y

[β(y)φ(Y )]− µ[P te
X ]
∣∣∣∣ (24)

subject to β(y) ≥ 0 and EPtr
Y

[β(y)] = 1, which guarantees that
Pnew
Y = β(y)P tr

Y is a valid distribution.
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Correction for Target Shift (TarS, P te
X |Y = P tr

X |Y )

Let β stand for β(y tr ) and βi for β(y tr
i )/ Denote by 1n the vector of

1’s of length n, and by K c the cross kernel matrix between y te and y tr ,
i.e., K c

ij = κ(x tr
i , x

tr
j ). The empirical version of the square of (24) is∣∣∣∣∣
∣∣∣∣∣ÛX |Y · 1

m

m∑
i=1

βiφ(y tr
i )− 1

n

n∑
i=1

ψ(x te
i )

∣∣∣∣∣
∣∣∣∣∣
2

=
1

m2
βTφT (y tr )ÛT

X |Y ÛX |Yφ(y tr )β

− 2

mn
1Tn ψ

T (x te)ÛX |Yφ(y tr )β + const

=
1

m2
βT ΩK ΩT︸ ︷︷ ︸

,A

β − 2

mn
1Tn K cΩT︸ ︷︷ ︸

,M

β + const

(25)

where the empirical estimate of UX |Y is ÛX |Y = Ψ(L + λI )−1ΦT , and

Ω , L(L + λI )−1.
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Correction for Target Shift (TarS, P te
X |Y = P tr

X |Y )

Therefore, we have the following constrained quadratic programming
(QP) problem:

min
β

1

2
βTAβ − m

n
Mβ, s.t. βi ∈ [0,Bβ] and

∣∣∣∣∣
m∑
i=1

βi −m

∣∣∣∣∣ ≤ mε (26)

where the empirical estimate of UX |Y is ÛX |Y = Ψ(L + λI )−1ΦT , and

Ω , L(L + λI )−1.

β values estimated by solving the above optimization problem usually
change dramatically along with y . To improve the estimation quality
of β, we reparameterize β as β = Rα, and obtain:

min
β

1

2
αTRTARα− m

n
[MR]α,

s.t. [Rα]i ∈ [0,Bβ] and

∣∣∣∣∣
m∑
i=1

1TmRα−m

∣∣∣∣∣ ≤ mε

(27)
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Location-Scale Conditional Shift (ConS, P te
Y = P tr

Y )

Assumptions:

AConS
1 : There exists w(Y tr ) = diag[w1(Y tr ), · · · ,wd(Y tr )] and b(Y tr ) =

[b1(Y tr ), · · · , bd(Y tr )]T , where d is the dimensionality of X , such that
the conditional distribution of X new , w(Y tr )X tr + b(Y tr ) given Y tr

is the same as that of X te given Y te .

∗We term this situation location-scale Cons (LS-ConS). In matrix form.
the transformed training points:

xnew , x tr �W + B (28)
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Location-Scale Conditional Shift (ConS, P te
Y = P tr

Y )

Assumptions:

AConS
2 : Set {ci1P

(wi,bi)
X |Y (x |yi) + ci2P

(w′
i,b

′
i)

X |Y (x |yi); i = 1, · · · ,C} is lin-

early independent ∀ci1, ci2(c2
i1+c2

i2 6= 0), wi,w′i(||wi||2F + ||w′i||2F 6= 0),
and bi,b′i.

∗ A necessary condition for AConS
2 is that P tr

X |Y (x |yi), i = 1, · · · ,C ,
are linearly independent after any LS transformation.
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Location-Scale Conditional Shift (ConS, P te
Y = P tr

Y )

A Kernel Mean Matching Approach:

We parameterize W and B as W = RG and B = RH, where G and
G are the parameters to be estimated.

U [Pnew
X |Y ] = CX newY C−1YY

= E(X new ,Y )∼Pnew
XY

[
ψ(X new )⊗ φT (Y )

]
E−1Y∼Ptr

Y

[
φ(Y )⊗ φT (Y )

]
= E(X tr ,Y )∼Ptr

XY

[
ψ(X new )⊗ φT (Y )

]
E−1Y∼Ptr

Y

[
φ(Y )⊗ φT (Y )

] (29)

The empirical estimate of U [Pnew
X |Y ] is consequently

Û [Pnew
X |Y ] =

1

m
ψ(xnew ) · φT (y tr ) ·

[
1

m
φ(y tr )φT (y tr ) + λ̃I

]−1
= Ψ̃)(L + λI )−1ΦT

(30)

where Ψ̃) = ψ(xnew ).
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Location-Scale Conditional Shift (ConS, P te
Y = P tr

Y )

We aim to minimize ||µ[Pnew
X ]− µ[P te

X ]||2, whose empirical version is :

J ConS , ||µ̂[Pnew
X ]− µ̂[P te

X ]||2 =
∣∣∣∣∣∣Û [Pnew

X |Y ]µ̂[P tr
Y ]− µ̂[P te

X ]
∣∣∣∣∣∣2

=
1

m2
1T
mφ

T (y tr )ÛT [Pnew
X |Y ]Û [Pnew

X |Y ]φ(y tr )1m

− 2

mn
1T
n ψ

T (x te)Û [Pnew
X |Y ]φ(y tr )1m

=
1

m2
1T
mΩK̃ ΩT1m −

2

mn
1T
n K̃ cΩT1m.

(31)
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Location-Scale Conditional Shift (ConS, P te
Y = P tr

Y )

We also regularize (31) to prefer the change in PX |Y to be as little as
possible, i.e., to make the entries of W close to one and those of B
close to zero. The regularization term is:

J reg =
λLS
m
·
∣∣∣∣W − 1m1

T
d

∣∣∣∣2
F

+
λLS
m
· ||B||2F (32)
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LS Generalized Target Shift (GeTarS, PY ,PX |Y change)

Assumptions: Assume AConS
1 holds, i.e., we condider LS-GeTarS.

We find the empirical version of ||µ[Pnew
X ]− µ[P te

X ]||2

J = ||µ̂[Pnew
X ]− µ̂[P te

X ]||2 =
∣∣∣∣∣∣Û [Pnew

X |Y ]µ̂[P tr
Y ]− µ̂[P te

X ]
∣∣∣∣∣∣2

=

∣∣∣∣∣∣∣∣ 1

m
Û [Pnew

X |Y ]φ(y tr )β − 1

n
ψ(x te)1n

∣∣∣∣∣∣∣∣2
=

1

m2
βTΩK̃ ΩTβ − 2

mn
1T
n K̃ cΩTβ.

(33)

We would also like the difference between P te
X |Y and P tr

X |Y to be as

little as possible, and minimize:

J GeTarS = J + λLSJ reg
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Background

The invariant components (IC)-type methods assume that there exist
a transformation T such that PS(T (X )) = PT (T (X )).

Drawback #1: In unsupervised domain adaptation, T can no be learned
by minimizing the distance between PS(Y |T (X )) and PT (Y |T (X )).
So, previous methods simply assume PS(Y |T (X )) ≈ PT (Y |T (X )).

Drawback #2: GeTars method assumes that all the features can be
transferred to the target domain by location-scale (LS) transformation.
However, many of the features can be highly noisy or cannot be well
matched after LS transformation.
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Motivation of Gong et al1

Rethinking #1: Under what conditions would PS(T (X )) ≈ PT (T (X ))
imply PS(Y |T (X )) ≈ PT (Y |T (X ))?

Rethinking #2: The components that are transferable between
domains are not necessarily invariant.

1Gong et al. Domain Adaptation with Conditional Transferable Components, ICML 2016.
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Causal Mechanism

Approach: Capture the underlying causal mechanism, and use causal
models to characterize how the distribution changes between domains.

Causal system: Let P(C ) characterizes the process which generates
the cause, and P(E |C ) describes the mechanism transforming cause C
to effect C . In the causal system C −→ E , P(E |C ) is independent of
the cause generating process P(C ).

Remark: In a causal system X −→ Y , if P(Y |X ) changes across
domains, one can hardly correct P(Y |X ) because P(X ) contains no
information about P(Y |X ).
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Basic Idea

Find transferable components whose conditional distribution is invari-
ant after proper LS transformations, i.e., PS(T (X )|Y ) ≈ PT (T (X )|Y ).

The causal direction is Y −→ X . Here, P(Y ) and P(X |Y ) change in-
dependently to each other, whereas P(X ) and P(Y |X ) usually change
dependently (thus it is possible to correct P(Y |X )).
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Conditional Transferable Components

Conditional invariant components (CIC) X ci are those components sat-
isfying the condition that P(X ci |Y ) stays invariant across different do-
mains.

Conditional transferable components (CTC) method: the conditional
distribution of the extracted conditional transferable components X ct

given Y , P(X ct |Y ), differs only in the location and scale across all
domains.
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Conditional Invariant Components

We first assume that there exist d-dimensional conditional invariant
components that can be represented as a linear transformation of the
D-dimensional raw features:

X ci = W TX (34)

where W ∈ RD× is a orthonormal matrix. If we have two domains on
which both X and Y are known, we can directly enforce the condition:

PT (X ci |Y ) = PS(X ci |Y ) (35)

However, in unsupervised domain adaptation, only the empirical marginal
distribution of X is available on the test domain. We do not have ac-
cess to the Y values on the target domain, and cannot match the
conditional distributions directly.
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Conditional Invariant Components

Assumptions:

ACIC : The elements in the set {κc1PS(W TX |Y = vc)+κc2PT (W TX |Y =
vc); c = 1, · · · ,C} are linearly independent ∀κc1, κc2(κ2c1 + κ2c2 6= 0),
if ther are not zero.

A : The linear transformation W is non-trivial.

Theorem:

If Pnew (X ci) = PT (X ci), we have PS(X ci |Y ) = PT (X ci |Y ) and
Pnew (Y ) = PT (Y ), i.e., X ci are conditional invariant components
from the source to the target domain.
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Conditional Invariant Components

A Squared Maximum Mean Discrepancy (MMD) Approach:

J ci =
∣∣∣∣µPnew (X ci )[ψ(X ci)]− µPT (X ci )[ψ(X ci)]

∣∣∣∣2
=
∣∣∣∣EX ci∼Pnew (X ci )[ψ(X ci)]− EX ci∼PT (X ci )[ψ(X ci)]

∣∣∣∣2
=
∣∣∣∣E(Y ,X )∼PS [β(Y )ψ(W TX )]− EX∼PT [ψ(W TX )]

∣∣∣∣2 (36)

In practice, we minimize its empirical version:

Ĵ ci =

∣∣∣∣∣∣∣∣ 1

nS
ψ(W TxS)β − 1

nT
ψ(W TxT )1

∣∣∣∣∣∣∣∣2
=

1

nS2
βTKSWβ −

2

nSnT
1TK T ,SW β +

1

nT 2 1
TK TW1.

(37)
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Location-Scale Conditional Transferable Components

One may not find sufficient conditional invariant components. Therefore,
to find more useful conditional transferable components, we assume that
there exist transferable components that can be approximated by a
location-scale transformation across domains.

Assumptions:

We assume that there exists W , a(Y S) = [a1(Y S), · · · , ad(Y S)]T and
b(Y S) = [b1(Y S), · · · , bd(Y S)]T , such that the conditional distribu-
tion of X ct , a(Y S) ◦ (W TX S) + b(Y S) given Y S is close to that of
W TX T given Y T .

∗ The transformed training data matrix can be written in matrix form:

xct = A ◦ (W TxS) + B (38)

where ◦ denote the Hadamard product.
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Location-Scale Conditional Transferable Components

With (38), we can generalize J ci to

J ct =
∣∣∣∣∣∣E(Y ,X ct)∼PS [β(Y )X ct ]− EX∼PT [ψ(W TX )]

∣∣∣∣∣∣2 (39)

and its empirical version:

Ĵ ct =

∣∣∣∣∣∣∣∣ 1

nS
ψ(xct)β − 1

nT
ψ(W T xT )1

∣∣∣∣∣∣∣∣2
=

1

nS2
βT K̃Sβ − 2

nSnT
1T K̃T ,Sβ +

1

nT 2 1
TKT 1.

(40)

In practice, we add a regularization term on A and B:

J reg =
λS
nS
·
∣∣∣∣A− 1d×nS

∣∣∣∣2
F

+
λL
nS
· ||B||2F

.
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Target Information Preservation

We would like X ct preserve the information about Y , i.e.,

ΣYY |X ct − ΣYY |X = 0 (41)

where ΣYY |X is the conditional covariance operator. According to its
definition, we have

ΣYY |X ct = ΣYY − ΣY ,X ct Σ−1X ct ,X ct ΣX ct ,Y (42)

where Σ·,· is the covariance or cross-covariance operator. We can use
1
nS
φ(yS)φT (yS), 1

nS
φ(yS)ψT (xct), and 1

nS
ψ(xct)ψT (xct) as the

estimators of ΣYY , ΣY ,X ct , and ΣX ct ,X ct .
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The End!
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