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Graph Neural Networks

The key design element of GNNs is the use of pairwise message passing,

such that graph nodes iteratively update their representations by exchanging
information with their neighbors.

2. Aggregate feature information

3. Predict graph context and label
from neighbors

using aggregated information

William L Hamilton et al., Inductive Representation Learning on Large Graphs, NIPS 2017
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Graph Neural Networks

The GraphSAGE model introduces a spatial based filter, which is based on
aggregating information from neighboring nodes. For a single node V;, the
process to generate its new features can be formulated as:

Ns(v,') = SAMPLE(N(V;), 5)
f/,\[s(vi) = AGGREGATE({FJ',VVJ' S Ns(v,-)}) (1)

F:- =0 ([Fivfjl\fs("i)] @)

where SAMPLE() is a function that takes a set as input and randomly
samples S elements from the input as out, AGGREGATE() is a function
to combine the information from the neighboring nodes, and [-,-] is the
concatenation operation.

William L Hamilton et al., Inductive Representation Learning on Large Graphs, NIPS 2017
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Latent Graph Infi

Given only the node features, how can we infer an underlying latent graph
that optimally models the relationships between nodes?

i Oumnn
heSRET i

Jianglin Lu et al. Latent Graph Inference with Limited Supervision. NeurlPS, 2023
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Latent Graph Inference

Latent Graph Inference (LGI)

Given a graph G(V,X) containing n nodes V = {V4,...,V,} and
a feature matrix X € R"™9 with each row X;. € R? representing
the d-dimensional attributes of node V;, latent graph inference aims
to simultaneously learn the underlying graph topology encoded by an
adjacency matrix A € R"™" and the discriminative d’-dimensional node
representations Z € R™9" based on X, where the learned A and Z are
jointly optimal for certain downstream tasks 7 given a specific loss
function L.

Jianglin Lu et al. Latent Graph Inference with Limited Supervision. NeurlPS, 2023
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Clustering partitions the data points into different groups such that the
objects in the same group have high similarity to each other.

(a) Original Data (b) Learnt Graph by Eq.(5) (¢) Learnt Graph by Eq.(7) (CAN)

Feiping Nie et al. Clustering and Projected Clustering with Adaptive Neighbors, KDD 2014
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Point Cloud Segmentation

Point clouds, or scattered collections of points in 2D or 3D, are arguably

the simplest shape representation.

point cloud

— EdgeConv H_ EdgeConv AHA EdgeConv —-H—»
= i g g

Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds, ACM Trans. :Graph.,72019
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Disease Prediction

In the domain of computer aided diagnosis (CADx), it is possible to learn a
single, optimal graph towards the downstream task of disease classification.

‘= Classification —
network
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Luca Cosmo et al. Latent-Graph Learning for Disease Prediction, MICCAL., 2020
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Multimodal Graph Learning

Artificial intelligence for graphs has achieved remarkable success in modelling

complex systems, ranging from dynamic networks in biology to interacting
particle systems in physics.
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Yasha Ektefaie et al. Multimodal
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® Shallow Methods
Structured Optimal Graph
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Structured Optimal Graph

Basic Idea: In general, closer samples are likely to have larger probability to
be connected. Thus, Aj; is inversely proportional to the distance between
X; and X;. Therefore, determining the value of the probability A can be
seen as solving:

mAin Z (HX,’: — Xj;||§ Aj;+ aA,?j) 2)
i
st Vi, Ajl=1, 0<A;<1

where the square of Euclidean distance || X;, — Xj:Hg is used for simplicity
and the regularization term aA,?j is used to avoid the trivial solution.

Feiping Nie et al. Unsupervised Feature Selection with Structured Graph Optimization. AAAI, 2016
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Structured Optimal Graph

Structured Optimal Graph: The optimal similarity matrix should have exact
¢ connected components, where ¢ is the number of cluster:

min >~ (IXi. = X3 Aj + aAZ) (3)
i.j
st. ViiArl =1, 0<A; <1, rank(La)=n—c
where L4 is the Laplacian matrix of A and rank (La)is the rank of L.

It can be proved that if rank (La) = n — ¢, the similarity matrix A will
contain exact ¢ connected components.

Feiping Nie et al. Unsupervised Feature Selection with Structured Graph Optimization. AAAI, 2016
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Block Diagonal Representation

K-Block Diagonal Structure

A, 0 --- 0
0 A, --- 0

_— : : . : ’AieRan (4)
0 0 --- A

Canyi Lu et al. Subspace Clustering by Block Diagonal Representation. TPAMI, 2018
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Block Diagonal Representation

[llustrations of three interesting structures of matrix: sparse, low-rank and
block diagonal matrices.

1

09
08
a7
08
0s
0
0
02
ot

a) sparse (b) low-rank (c) block diagonal

Canyi Lu et al. Subspace Clustering by Block Diagonal Representation. TPAMI, 2018
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Block Diagonal Representation

Key Idea: If the affinity matrix is block diagonal, i.e., the between-cluster
affinities are all zeros, one may achieve perfect data clustering by using
spectral clustering:

1 2
min > ||[X7 = XA+ 5 ]A] g, (5)
s.t. diag(A)=0,A>0,A=A"

where

Al = Z Ai (La) (6)

i=n—k+1

and \; (La) are the eigenvalues of Lp in the decreasing order.

Canyi Lu et al. Subspace Clustering by Block Diagonal Representation. TPAMI, 2018
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Iterative Deep Graph Learning

Key Idea: IDGL learns a better graph structure based on better node

embeddings, and vice versa (i.e., better node embeddings based on a
better graph structure).

Downstream
task prediction

l. Graph "‘
Gra ph structure
Learner

Input data

Node embeddings
Repeat until condition satisfied

Yu Chen et al. lterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings, 2020
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Iterative Deep Graph Learning

IDGL: uses multi-head self-attention with epsilon-neighborhood sparsifica-
tion for constructing a graph, and optimizes a joint loss combining both
task-specific prediction loss and graph regularization loss.

A“—)\L(” 1-A) an“) (1= n) (A™M) }
{X,A(“),L(U)}
.__...-, Slmllarlty Iearnlng [X Af) A(f)} Graph

Q_‘O cos(Wy @ v1 WR ©v;) regulanzatlon
"O“'.
Data points | . O . GNN

t th |terat|on

Repeated until condition satisfied

Yu Chen et al. Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings, 2020
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Self-Supervision for Latent Graph Inference
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SLAPS

Supervision Starvation: Starved edges exist in existing LGl methods. These
edges are problematic as the predictions at the test time depend on these
edges. If their values are learned without enough supervision, the model
may make poor predictions at the test time.
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Bahare Fatemi et al. SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks, NeurlPS, 2021
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SLAPS

Key ldea: take a learning-based approach based on self-supervision. The
learned graph structure is used for both the classification task and a de-
noising task on the node features. The self-supervised task encourages the
model to learn a structure that is suitable for predicting the node features.
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Bahare Fatemi et al. SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks, NeurlPS, 2021
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O Proposed Methods
Latent Graph Inference with Limited Supervision
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Latent Graph Inference with Limited Supervision

Why Supervision Starvation Happens? In fact, the SS problem is caused by
a common and necessary post-processing operation known as graph sparsi-
fication, which adjusts the initial dense graph to a sparse one:

(7)

A — A,'j, if A,'J'Etop—l-i(A,';)
Y7o, otherwise,

where top-x(A;.) denotes the set of the top x values in A;.. After this

sparsification operation, a significant number of edge weights are directly
erased.

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
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Latent Graph Inference with Limited Supervision

How Many Nodes Suffer from This Problem?

k-hop Starved Node

Given a graph G(V, X) consisting of n nodes V = {V4,...,V,} and
the corresponding node features X, for a k-layer graph neural network
GNN4(X; @) with network parameters ®, the unlabeled node V; is a
k-hop starved node if, for Vk € {1,..., k}, VV; € N,(i), where N,(/)
is the set of k-hop neighbors of V;, V; is unlabeled. Specifically, 0-hop

starved nodes are defined as the unlabeled nodes.

v

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
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Latent Graph Inference with Limited Supervision

A Toy Example: Given a 2-layer GNN, node 5 is a 2-hop starved node.

1 2 3 45 6
© ) ) 1 1 01 0 1 07
2 011100
(6) @ Lobeled A: 3 111001
e o QO unlabeled 4 010100
5 1 00 01O
6 Loo1o00 1]

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
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Latent Graph Inference with Limited Supervision

Real-World Data:  The more labeled nodes, the smaller the number of
starved nodes. This is natural because the more labeled nodes, the greater
the probability that a node will connect to a labeled node. Moreover, the
number of k-hop starved nodes decreases as k increases.
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Latent Graph Inference with Limited Supervision

How to Identify Starved Nodes?

Identification of Starved Nodes

Given a sparse adjacency matrix A € R"*" with self-connections gen-
erated on graph G(V,X) by a latent graph inference model with a
k-layer graph neural network GNN.(X;®), the node V; is a k-hop
starved node, if 3j € {1,...,n}, such that [Ig+(A)]; = 1, and for
Vjie{j| [Lr(A)]j = 1U[Ig+(A))5 =1U... U [Ig+(A) fj =1}V,
is unlabeled. )

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
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Latent Graph Inference with Limited Supervision

[llustration:  Since nodes V5, and Vj are labeled, we identify the 1-hop
starved nodes as {Vi, Vs, Vs} (self-connections are not considered when
defining k-hop neighbors.).

1 2 3 45 6
G) 1 1 010 1 07 (Vs,W)
& G 2 01 1 10 0] (Vs,Va)
A: 3 1 110 0 1| (ViVe,Ve)
® 4 0101 0 0] (W
© Labeled 5 100 010 (W)
e o QO unlabeled 6 0 01 0 0 1 (Vs)

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
Invited Talk (ACLab) Latent Graph Inference Jianglin Lu 37/45



Latent Graph Inference with Limited Supervision

lllustration: We can identify 2-hop starved nodes from the set { V4, Vs, V5}
as {Vs}.
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Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
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Latent Graph Inference with Limited Supervision

CUR Decomposition Makes Better Solution:

CUR Decomposition

Given Q € R™™ of rank p = rank(Q), rank parameter k < p, and
accuracy parameter 0 < € < 1, construct column matrix C € R"*¢
with ¢ columns from Q, row matrix R € R™™ with r rows from Q,
and intersection matrix U € R°*" with ¢, r, and rank(U) being as
small as possible, in oder to reconstruct Q within relative-error:

1Q — CURJ[Z < (1+¢)||Q — Q«l|Z (8)

Here, Q, = UkaVkT € R™™ is the best rank k matrix obtained via
the singular value decomposition (SVD) of Q.

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
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Latent Graph Inference with Limited Supervision

CUR Decomposition Makes Better Solution:

Identification of Starved Nodes

Given a sparse adjacency matrix A € R"™" with self-connections gen-
erated on graph G(V, X), construct C = A[:, col_mask| € R"*¢, where
col_mask € {0,1}" contains only ¢ positive values corresponding to
c labeled nodes, and R = A[row_mask,:] € R™" with row_mask =
Ig-(Cl.) € {0,1}". Then, (a) U = A[row_mask, col_mask] = 0 €
R <, where 0 is a zero matrix, (b) the set of 1-hop starved nodes
Sety(r) = {Vi|i € RM, }, where RM, € N" indicates the set of indexes
of positive elements from row_mask, and (c) for each i € RM,, V; is a
2-hop starved node if, for Vj satisfying [1g+(R)]; = 1, j € RM,..

v

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
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Latent Graph Inference with Limited Supervision

[llustration: Based on the C, U, R matrices, we can determine that row_mask =
[1,0,0,0,1,1]", RM, = {1,5,6}, the 1-hop starved nodes are {V4, Vs, V5},
and the 2-hop starved node is V5.

2 4
; (1’(1’ 12 3 45 6 2 4
1 101010 1 00
c.z }(1) R5[10001o] U'5[oo]
5 o 0 6 00100 1 6 00
6 00

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
Invited Talk (ACLab) Latent Graph Inference Jianglin Lu 41/45



Latent Graph Inference with Limited Supervision

How to Eliminate Starved Nodes? After identification, we can reduce the
starved nodes by rebuilding the corrupted affinities. Specifically, we rebuild
the intersection matrix U to ensure that the reconstructed U # 0:

R:A+aB:A+ar(G,n), (9)

where function F(Cl, n) extends the matrix U € R™€ to an n x n matrix by
padding n— r rows of zeros and n— ¢ columns of zeros in the corresponding
positions.

Jianglin Lu et al. Latent Graph Inference with Limited Supervision, NeurlPS, 2023
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Latent Graph Inference with Limited Supervision

Experiments

Table 1: Test accuracy (%) of the baselines (M) and our CUR extension versions (M_U and M_R)
on various datasets with different labeling rates (marked in bold), where “OOM’ indicates out of
memory. The highest and second highest results are marked in red and blue, respectively.

Models / datasets ogbn-arxiv Cora390 Coral40 Citeseer370 Citeseer120 Pubmed
7 of labeled /all nodes | 90941/169343 39072708 140/2708 37013327 120/3327 60/19717
Labeling rate 53.70% 14.40% 5.17% 11.12% 3.61% 0.30%
GCN+KNN 55.15 £ 0.11 7282 E£039 6794 £029 7328 £0.23 69.68 £ 053  68.66E 0.05
GCN+KNN_U (ours) 55.82 4+ 0.11 72824021 6818+ 044 3684010 6974+ 054 7412+ 032
GCN+KNN_R (ours) 5586+ 0.10 72924028 6812+ 048  73.66+0.14 6990 +0.68 7478 +0.17
TGCNEKNN T T T T T OOM ~ ~ T72.06 £ 054 T 6876 £ .20~ 7728+ 064 686FE 114 T T 0OM T
GCN&KNN_U (ours) 00OM 73.04 £ 020 7016 £ 091 T840+ 044 7052 + 1.04 00OM
GCN&KNN_R (ours) 00M 73204025 7024 +097 78484030 6948 +0.77 00OM
TIDGLT4] T T [ T OOM ~ ~ 7400 F038 T 7074F050 © 71304017 6924 F0.19 T T OOM
IDGL_U (ours) 00OM 74544052 70824049 7246 4+0.14  69.32 +0.39 00OM
IDGL._R (ours) 00M 7448+ 047 71144022 7256 4+0.12  69.86 + 0.50 00OM
TLCGS[I13] T T OOM ~— ~ 72024037 ~ 6988+0.66 7384+083 7230+033 ~ ~ OOM
LCGS_U (ours) 00OM 7218 £ 031 7004 £ 080 7418+ 043 7238 +£043 00OM
LCGS R (ours) 00OM 72224045 7014+ 064 74204036 7240 + 042 00OM
TGRCN[46] T T T T T T T OOM ~ ~ T7334 X027 ~ 68861025 7362+ 023 7124 £0.19 6924+ 020
GRCN_U (ours) 00OM 74104025 6944 +034 73884034 71544031 7280 + 099
GRCN_R (ours) 00OM 7414 +£0.22 6956 +022 74224013 7164+ 041 7282+ 103
TSLAPS[IOT T T T T T 3536 L0027 T76.62 083 T 74261053 T 743240356 T70.66 £ 097 ~ 74.86 L 0.79 ~
SLAPS_U (ours) 5568+ 009 7694+ 042 7456+ 021  T4824+027  TI68+047 7674+ 0.59
SLAPS_R (ours) 56.11 + 0.15 76.82+£0.19 7500 +049 74904042 7236 +049 7712+ 077
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Latent Graph Inference with Limited Supervision

Experiments
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