
Introduction of Graph Neural Network
Personal Reading Notes

Jianglin Lu

Department of ECE

College of Engineering

Northeastern University

360 Huntington Avenue, Boston, MA 02115, USA

https: // jianglin954. github. io/

jianglinlu@outlook.com

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 1 / 57

https://jianglin954.github.io/


Outline

1 Preliminaries

2 Spectral-based Graph Filters

3 Spatial-based Graph Filters

4 Graph Pooling

5 Advanced GNN

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 2 / 57



Outline

1 Preliminaries

2 Spectral-based Graph Filters

3 Spatial-based Graph Filters

4 Graph Pooling

5 Advanced GNN

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 3 / 57



Preliminaries—Why Graph Neural Network

• While deep learning effectively captures hidden patterns of Euclidean
data, there is an increasing number of applications where data are
represented in the form of graphs.

• As graphs can be irregular, a graph may have a variable size of un-
ordered nodes, and nodes from a graph may have a different number
of neighbors, resulting in some important operations (e.g., convolu-
tions) being easy to compute in the image domain, but difficult to
apply to the graph domain.

• A core assumption of existing machine learning algorithms is that in-
stances are independent of each other. This assumption no longer
holds for graph data because each instance (node) is related to others
by links of various types.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 4 / 57



Preliminaries—Spectral Graph Theory

Graph Laplacian

Given a undirected and connected graph G = {V , E ,A}, where V is a
finite set of |V| = N , E is a set of edges, and A ∈ RN×N is a weighted
adjacency matrix encoding the connection weight between two vertices.
An essential operator in spectral graph analysis is the graph Laplacian,
which combinatorial definition is:

L = D− A (1)

where D is a diagonal degree matrix with Dii =
∑

j Aij , and normalized
definition is:

L = IN −D− 1
2AD− 1

2 (2)

where IN is the identity matrix.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 5 / 57



Preliminaries—Spectral Graph Theory

As L is a real symmetric positive semidefinite matrix, it has com-
plete set of orthonormal eigenvectors {ul}N−1

l=0 , known as the graph
Fourier modes, and their associated ordered real nonnegative eigenval-
ues {λl}N−1

l=0 . The Laplacian is indeed diagonalized by the Fourier basis
U = [u0, . . . ,uN−1] ∈ RN×N such that:

L = UΛUT (3)

where Λ = diag([λ0, . . . , λN−1]) ∈ RN×N .

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 6 / 57



Preliminaries—Spectral Graph Theory

Graph Fourier Transform

For a signal f ∈ RN defined on a graph G, its Graph Fourier Transform
is defined as follows:

f̂ = UT f (4)

where U consists of eigenvectors of the Laplacian matrix of G and f̂ is
the obtained graph Fourier coefficients for the signal f.

There graph Fourier coefficients describe how each graph Fourier compo-
nent contributes to the graph signal f. Specifically, the i-th element of f̂
corresponds to the i-th graph Fourier component ui with the frequency λi ,
where λi is the eigenvalue corresponding to ui .

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 7 / 57



Preliminaries—Spectral Graph Theory

To modulate the frequencies of the signal f, we filter the graph Fourier
coefficients as follows:

f̂ ′[i ] = f̂[i ] · γ(λi), for i = 1, . . . ,N . (5)

where γ(λi) is a function with the frequency λi as input which deter-
mines how the corresponding frequency component should be modu-
lated. In matrix form, we have:

f̂ ′ = γ(Λ) · f̂ = γ(Λ) ·UT f, (6)

where Λ is a diagonal matrix consisting of the frequencies (eigenvalues
of the Laplacian matrix).

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 8 / 57



Preliminaries—Spectral Graph Theory

Inverse Graph Fourier Transform

With the filtered coefficients, we can reconstruct the signal to the graph
domain using the Inverse Graph Fourier Transform as follows:

f ′ = Uf̂ ′ = U · γ(Λ) ·UT f, (7)

where f ′ is the obtained filtered graph signal.

The filtering process can be regarded as applying the operator U ·γ(Λ) ·UT

to the input graph signal.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 9 / 57



Outline

1 Preliminaries

2 Spectral-based Graph Filters

3 Spatial-based Graph Filters

4 Graph Pooling

5 Advanced GNN

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 10 / 57



Spectral-based Graph Filters

If we know how we want to modulate the frequencies in the input signal,
we can design the function γ(λ) in a corresponding way. However,
when utilizing the spectral-based filter as a graph filter in graph neural
networks, we often do not know which frequencies are more important.

To solve this problem, we can model γ(Λ) with certain functions and
then learn the parameters with the supervision from data, by which the
graph filters can be learned in a data-driven way.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 11 / 57



Spectral-based Graph Filters

Bruna et al., Spectral Networks and Deep Locally Connected Networks on Graphs,

arXiv 2013

A natural attempt is to give full freedom when designing γ() (or a non-
parametric model). Specifically, the function γ() is defined as follows:

γ(λl) = θl (8)

where θl is a parameter to be learned from data.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 12 / 57



Spectral-based Graph Filters

Drawbacks:

• The number of parameters to be learned is equal to the number
of nodes N , which can be extremely large in real-world graphs.
Hence, it requires lots of memory to store these parameters and
also abundant data to fit them.

• The filter U · γ(Λ) ·UT is likely to be a dense matrix. Therefore,
the calculation of the i -th element of the output signal f ′ could
relate to all the nodes in the graph. In other words, the operator
is not spatially localized.

• The computational cost is quite expensive due to the eigende-
composition of the Laplacian matrix and the matrix multiplication
between dense matrices when calculating U · γ(Λ) ·UT .

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 13 / 57



Spectral-based Graph Filters

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized

Spectral Filtering, NIPS 2016

To address the above-mentioned issues, a polynomial filter operator is
proposed, in which the function γ() can be modeled with a K -order
truncated polynomial as follows:

γ(λl) =
K−1∑
k=0

θkλ
k
l or γ(Λ) =

K−1∑
k=0

θkΛ
k (9)

where θl is a parameter to be learned from data.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 14 / 57



Spectral-based Graph Filters

With this polynomial filter, we can get the output f ′ as follows:

f ′ = U · γ(Λ) ·UT f = U ·
K−1∑
k=0

θkΛ
k ·UT f

=
K−1∑
k=0

θkU · Λk ·UT f =
K−1∑
k=0

θkU · (ΛUTU)k ·UT f

=
K−1∑
k=0

θk (U · Λ ·UT ) · · · (U · Λ ·UT )︸ ︷︷ ︸
k

·f

=
K−1∑
k=0

θkL
kf

(10)

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 15 / 57



Spectral-based Graph Filters

Lemma

Let G be a graph and L be its Laplacian matrix. Then, the i ,j-
th element of the k-th power of the Laplacian matrix Lk

ij = 0 if
dis(vi , vj) > k , where dis() is the shortest path distance.

• The polynomials of the Laplacian matrix are all sparse.

• Spectral filters represented by K th-order polynomials of the Laplacian
are exactly K -localized (only involves K -hop neighborhoods).

• The learning complexity is O(K ), the support size of the filter, and
thus the same complexity as classical CNNS.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 16 / 57



Spectral-based Graph Filters

Merits:

• U ·γ(Λ) ·UT can be simplified to be a polynomial of the Laplacian
matrix, meaning that no eigendecomposition is needed and the
polynomial parametrized filtering operator is spatially localized,
i.e., the calculation of each element of the output f ′ only involves
a small number of nodes in the graph.

Drawbacks:

• The basis of the polynomial (1, x , x2, . . .) is not orthogonal to each
other. Hence, the coefficients are dependent on each other, mak-
ing them unstable under perturbation during the learning process.
In other words, an update in one coefficient may lead to changes
in other coefficients.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 17 / 57



Spectral-based Graph Filters

To address the above-mentioned issues, we first give the definition of
Chebyshev polynomial.

Chebyshev Polynomial

Chebyshev polynomial Tk(x) of order k can be computed by the stable
recurrence relation:

Tk(x) = 2xTk−1(x)− Tk−2(x) (11)

with T0 = x and T1 = x . These polynomials form an orthogonal basis
for L2([−1, 1], dy/

√
1− y 2), the Hilbert space of square integrable

functions with respect to the measure dy/
√

1− y 2.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 18 / 57



Spectral-based Graph Filters

With the Chebyshev polyomial, the filter can be parametrized as the
truncated expansion:

γ(Λ) =
K−1∑
k=0

θkTk(Λ̃) (12)

where θ ∈ RK is a vector of Chebyshev coefficients, and Tk(Λ̃) ∈ RN×N

is the Chebyshev polynomial of order k evaluated at Λ̃ = 2Λ/λmax−IN ,
a diagonal matrix of scaled eigenvalues that lie in [−1, 1].

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 19 / 57



Spectral-based Graph Filters

The process of applying the Chebyshev filter on a graph signal f can
be defined as:

f ′ = U ·
K−1∑
k=0

θkTk(Λ̃) ·UT f

=
K−1∑
k=0

θkU · Tk(Λ̃) ·UT f

=
K−1∑
k=0

θkTk(L̃)f

(13)

where Tk(L̃) ∈ RN×N is the Chebyshev polynomial of order k evaluated

at the scaled Laplacian L̃ = 2L
λmax

− IN .

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 20 / 57



Spectral-based Graph Filters

N. Kipf et al., Semi-Supervised Classification with Graph Convolutional Networks,

ICLR 2017

A simplified version of Chebyshev filter is named GCN filter is proposed,
which sets the order of Chebyshev polynomials to K = 1 and approxi-

mates λmax = 2 (i.e., Λ̃ = 2Λ/λmax − IN = Λ− IN):

γ(Λ) = θ0T0(Λ̃) + θ1T1(Λ̃) = θ0IN + θ1Λ̃ = θ0IN + θ1(Λ− IN) (14)

Applying the GCN filter on a graph signal f, we have:

f ′ = Uγ(Λ)UT f = θ0UUT f + θ1U(Λ− IN)U
T f

= θ0f + θ1(L− IN)f = θ0f + θ1(D
− 1

2AD− 1
2 )f

(15)

where L = IN −D− 1
2AD− 1

2 .

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 21 / 57



Spectral-based Graph Filters

By setting θ = θ0 = −θ1, we have:

f ′ = θ0f + θ1(D
− 1

2AD− 1
2 )f = θ(IN +D− 1

2AD− 1
2 )f (16)

Note that, IN+D− 1
2AD− 1

2 has eigenvalues in the range [0, 2]. Repeated
application of this operator can therefore lead to numerical instabilities
and exploding/vanishing gradients when used in a deep neural network
model.

To alleviate this problem, we introduce the renormalization trick:

IN +D− 1
2AD− 1

2 → D̃− 1
2 ÃD̃− 1

2 (17)

where Ã = A+ IN and D̃ii =
∑

j Ãij .

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 22 / 57



Spectral-based Graph Filters

The final GCN filter after these simplification is defined as:

f ′ = θD̃− 1
2 ÃD̃− 1

2 f (18)

• For a single node, this process can be viewed as aggregating in-
formation from its 1-hop neighbors where the node itself is also
regarded as its 1-hop neighbor.

• The GCN filter can also be viewed as a spatial-based filter, which
only involves directly connected neighbors when updating node
features.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 23 / 57



Spectral-based Graph Filters

Generalization to Multi-channel Graph Signals:

We can generalize this definition to a signal F′ ∈ RN×F with C input
channels (i.e., a C -dimensional feature vector for every node) and F
filters or feature maps as follows:

F′ = D̃− 1
2 ÃD̃− 1

2FΘ (19)

where Θ ∈ RC×F is a matrix of filter parameters and F′ is the convolved
signal matrix.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 24 / 57



Outline

1 Preliminaries

2 Spectral-based Graph Filters

3 Spatial-based Graph Filters

4 Graph Pooling

5 Advanced GNN

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 25 / 57



Spatial-based Graph Filters

Hamilton et al., Inductive Representation Learning on Large Graphs, NIPS 2017

The GraphSAGE model introduces a spatial based filter, which is based on
aggregating information from neighboring nodes. For a single node vi , the
process to generate its new features can be formulated as:

NS(vi ) = SAMPLE (N (vi ), S)

f ′NS (vi )
= AGGREGATE ({Fj , ∀vj ∈ NS(vi )})

F′
i = σ

([
Fi , f

′
NS (vi )

]
Θ
) (20)

where SAMPLE () is a function that takes a set as input and randomly
samples S elements from the input as out, AGGREGATE () is a function to
combine the information from the neighboring nodes where f ′NS (vi )

denotes

the output of the AGGREGATE () function, and [·, ·] is the concatenation
operation.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 26 / 57



Spatial-based Graph Filters

There are several AGGREGATE () functions as below:

• Mean aggregator, which is to simply take element-wise mean of the
vectors in {Fj ,∀vj ∈ NS(vi )}.

• LSTM aggregator, which is to treat the set of the sampled neighboring
nodes NS(vi ) of node vi as a sequence and utilize the LSTM architec-
ture to process the sequence. Since there is no natural order among
the neighbors, a random ordering is adopted.

• Pooling aggregator, which adopts the max pooling operation to sum-
marize the information from the neighboring nodes.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 27 / 57



Spatial-based Graph Filters

Velickovic et al., Graph Attention Networks, ICLR 2018

Motivation:

• In all of the aforementioned spectral approaches, the learned filters de-
pend on the Laplacian eigenbasis, which depends on the graph struc-
ture. Thus, a model trained on a specific structure cannot be directly
applied to graph with a different structure.

• In the spatial approach, GraphSAGE needs to sample a fixed-size neigh-
borhood of each node in order to keep its computational footprint
consistent. This does not allow it access to the entirety of the neigh-
borhood while performing inference.

• One of the benefits of attention mechanisms is that they allow for
dealing with variable sized inputs, focusing on the most relevant parts
of the input to make decisions.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 28 / 57



Spatial-based Graph Filters

When generating the new features for a node vi , GAT attends to all its
neighbors to generate an importance score for each neighbor. Specifically,
the importance score of node vj ∈ N (vi ) ∪ {vi} to the node vi can be
calculated as follows:

eij = a (FiΘ,FjΘ) (21)

where Θ is a shared parameter matrix and a() is a shared attention function.

To make the importance scores easily comparable across different nodes, we
need to normalize them across all choices of j using the softmax function:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(22)

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 29 / 57



Spatial-based Graph Filters

The attention function a() is a single-layer feedforward network, parametrized
by a weight vector a and applying the LeakyReLU nonlinearity, as follows:

α (FiΘ,FjΘ) = LeakyReLU(aT [FiΘ,FjΘ]) (23)

where [·, ·] denotes the concatenation operation, a is a parametrized vector
and LeakyReLU is the nonlinear activation function.

αij =
exp(eij)∑

k∈Ni
exp(eik)

=
exp

(
LeakyReLU

(
aT [FiΘ||FjΘ]

))∑
k∈Ni

exp (LeakyReLU (aT [FiΘ||FkΘ]))
(24)

where || is the concatenation operation.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 30 / 57



Spatial-based Graph Filters

With the normalized importance scores, the new representation F′
i of node

vi can be computed as:

F′
i = σ

 ∑
vj∈N (vi )∪{vi}

αijFjΘ

 (25)

To stabilize the learning process of self-attention, we employ multi-head
attention. Specifically, K independent attention mechanisms execute the
transformation of (25) and then their features are concatenated, resulting
in the following output feature representation:

F′
i =

Kn

k=1

σ

 ∑
vj∈N (vi )∪{vi}

αk
ijFjΘ

k

 (26)

where || represents concatenation.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 31 / 57



Spatial-based Graph Filters

If we perform multi-head attention on the final layer of the network, con-
catenation is no longer sensible—instead, we employ averaging, and delay
applying the final nonlinearity:

F′
i = σ

 1

K

K∑
k=1

∑
vj∈N (vi )∪{vi}

αk
ijFjΘ

k

 (27)

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 32 / 57



Spatial-based Graph Filters

Simonovsky et al., Dynamic Edge-Conditioned Filters in Convolutional Neural Net-

works on Graphs, CVPR 2017

Motivation:

• There may be edge information available in the graph. However, the
current formulations of graph convolution do not exploit edge labels.

• We formulate a convolution-like operation on graph signals performed
in the spatial domain where filter weights are conditioned on edge labels
and dynamically generated for each specific input sample.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 33 / 57



Spatial-based Graph Filters

For a given edge (vi , vj), we use tp(vi , vj) to denote its type. Then the
edge-conditioned convolution (ECC filter) is defined as:

F′
i =

1

|N (vi )|
∑

vj∈N (vi )

FjΘtp(vi ,vj ) (28)

where Θtp(vi ,vj ) = f (Lji ;ω), f () is parameterized by a learnable network
with weights ω, and L is the edge label matrix.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 34 / 57



Spatial-based Graph Filters

Monti et al., Geometric Deep Learning on Graphs and Manifolds Using Mixture

Model CNNs, CVPR 2017

The mixture model networks (MoNet) is a general framework allowing to
design convolutional deep architectures on non-Euclidean domains such as
graphs and manifolds. For each neighbor vj ∈ N (vi ) of a center node vi ,
a vector of pseudo-coordinate is introduced to denote the relevant relation
between nodes vj and vi with their degrees as:

u(vi , vj) =

(
1√
di
,

1√
dj

)
(29)

where di and dj denote the degree of nodes vi and vj , respectively.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 35 / 57



Spatial-based Graph Filters

Then, a Gaussian kernel is applied on the pseudo-coordinate to measure the
relation between the two nodes as

αij = exp

(
−1

2
(u(vi , vj)− µ)TΣ−1(u(vi , vj)− µ)

)
(30)

where Σ and µ are learnable covariance matrix and mean vector of a Gaus-
sian kernel, respectively. The aggregation process is as:

F′
i =

∑
vj∈N (vi )

αijFj (31)

Typically, a set of K kernels with different means and covariances are
adopted, resulting in:

F′
i =

K∑
k=1

∑
vj∈N (vi )

αk
ijFj (32)

where αk
ij is from the k-th Gaussian kernel.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 36 / 57



Spatial-based Graph Filters

Gilmer et al., Neural Message Passing for Quantum Chemistry, ICML 2017

Many spatial-based graph filters can be formulated in the Message Passing
Neural Networks (MPNN). For a node vi , the MPNN filter updates its
features as follows:

mi =
∑

vj∈N (vi )

M(Fi ,Fj , e(vi ,vj ))

F′
j = U(Fi ,mi )

(33)

where M() is the message function that generates the messages to pass to
node vi from its neighbors, U() is the update function that updates the
features of node vi by combing the original features and the aggregated
message from its neighbors, and e(vi ,vj ) is edge features if available.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 37 / 57



Comparison between Spectral and Spatial Graph Filters

Wu et al., A Comprehensive Survey on Graph Neural Networks, TNNLS 2021

Spectral models have a theoretical foundation in graph signal processing.
However, spatial models are preferred over spectral models because of:

• Efficiency: spectral models either need to perform eigenvector compu-
tation or handle the whole graph at the same time. Spatial models are
more scalable to large graphs as they directly perform convolutions in
the graph domain via information propagation. The computation can
be performed in a batch of nodes instead of the whole graph.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 38 / 57



Comparison between Spectral and Spatial Graph Filters

• Generality: spectral models which rely on a graph Fourier basis gener-
alize poorly to new graphs. They assume a fixed graph. Any perturba-
tions to a graph would result in a change of eigenbasis. Spatial-based
models perform graph convolutions locally on each node where weights
can be easily shared across different locations and structures.

• Flexibility: spectral models are limited to operate on undirected graphs.
Spatial models are more flexible to handle multi-source graph inputs
such as edge inputs, directed graphs, signed graphs, and heterogeneous
graphs, because these graph inputs can be incorporated into the ag-
gregation function easily.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 39 / 57



Outline

1 Preliminaries

2 Spectral-based Graph Filters

3 Spatial-based Graph Filters

4 Graph Pooling

5 Advanced GNN

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 40 / 57



Graph Pooling

• The graph filters refine the node features without changing the graph
structure. Typically, the graph filter operations are sufficient for node-
focused tasks. However, for graph-based tasks, a representation of the
entire graph is desired.

• There are two main kinds of information that are important for gen-
erating the graph representation, including node features and graph
structure. The graph representation is expected to preserve both the
node feature information and the graph structure information.

• Similar to the classical convolutional neural network, graph pooling
layers are proposed to generate graph level representations.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 41 / 57



Graph Pooling

In general, there are two kinds of graph pooling layers:

• Flat graph pooling: which generates the graph-level representation di-
rectly from the node representations in a single step. For example, the
mean/max/sum pooling layers can be adapted to GNN by applying
them to each feature channel.

• Hierarchical graph pooling: which summarizes the graph information
by coarsening the original graph step by step. In this design, there are
often several graph pooling layers, each of which follows a stack of
several filters.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 42 / 57



Graph Pooling—Flat Graph Pooling

Wu et al., A Comprehensive Survey on Graph Neural Networks, TNNLS 2021

The mean/max/sum pooling is the most primitive and effective way to
implement down-sampling since calculating the mean/max/sum value in
the pooling window is fast:

fG = mean/max/sum(fK1 , fK2 , , · · · , fKN ) (34)

where K is the index of the last graph convolutional layer.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 43 / 57



Graph Pooling—Flat Graph Pooling

Li et al., Gated Graph Sequence Neural Networks, ICLR 2016

An attention-based flat pooling operation utilizes an attention score to sum-
marize the node representations for generating the graph representation.
Specifically, the attention score for node vi is computed as:

si =
exp (h(Fi ))∑

vj∈N (vi )
exp (h(Fj))

(35)

where h is a feedforward network on map Fi to a scalar. With the learned
attention scores, the graph representation can be summarized from the node
representations as:

fG =
∑

vj∈N (vi )

si · tanh (FiΘi ) (36)

where Θi are parameters to be learned.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 44 / 57



Graph Pooling—Hierarchical Graph Pooling

The aforementioned pooling methods mainly consider graph features and
usually ignore the hierarchical graph structural information. Hierarchical
graph pooling layers aim to preserve such information by coarsening the
graph step by step until the graph representation is achieved. There are
roughly two ways to coarsen the graph:

• Downsampling-based graph pooling: selects the most important nodes
as the nodes for the coarsened graph.

• Supernode-based graph pooling: combines nodes in the input graph to
form supernodes that serve as the nodes for the coarsened graph.

The main difference between the two ways is that the downsampling based
methods keep nodes from the original graph while the supernode-based
methods generate new nodes for the coarsened graph.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 45 / 57



Graph Pooling—Hierarchical Graph Pooling

Downsampling-based graph pooling:

To coarsen the input graph, a set of Nop nodes are selected according to
some importance measures, and then graph structure and node features for
the coarsened graph are formed upon these nodes.

There are three key parts in a downsampling-based graph pooling layers:

• Develop the measure for downsampling.

• Generate graph structure for the coarsened graph.

• Generate node features for the coarsened graph.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 46 / 57



Graph Pooling—Hierarchical Graph Pooling

Gao et al., Graph U-Nets, ICML 2019

In gPool layer, the importance measure for nodes is learned from the input
node features Fip as:

y =
Fipp

||p||
(37)

where Fip ∈ RNip×dip is the matrix of the input node features and p ∈ Rdip is
a vector to be learned to project the input features into importance scores.
With the importance scores, we can rank all the nodes and select the Nop

most important ones as:

idx = rank(y,Nop) (38)

where Nop is the number of nodes in the coarsened graph and idx denotes
the indices of the selected top Nop nodes.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 47 / 57



Graph Pooling—Hierarchical Graph Pooling

Then, the graph structure for the coarsened graph can be induced from the
graph structure of the input graph as:

Aop = Aip(idx , idx) (39)

Similarly, the node features can also be extracted from the input node fea-
tures. In addition, it adopts a gating system to control the information
flow from the input features to the new features. Specifically, the selected
nodes with a higher importance score can have more information flow to
the coarsened graph, by:

ỹ = σ(y(idx)); F̃ = Fip(idx , :); Fp = F̃⊙
(
ỹ1Tdip

)
(40)

where σ() is the sigmoid function mapping the importance score to (0, 1).

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 48 / 57



Graph Pooling—Hierarchical Graph Pooling

Lee et al., Self-Attention Graph Pooling, ICML 2019

The gPool layer learns the importance measure for nodes solely based on
the input features, and ignores the graph structure information. To solve
this problem, SAGPool utilizes the GCN filter to learn the importance score:

y = σ (GCNFilter(A,F)) = σ
(
D̃− 1

2 ÃD̃− 1
2FΘatt

)
(41)

where σ is an activation function, Θatt ∈ RC×1 is the only parameter of the
SAGPool, and y is a vector of self-attention score.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 49 / 57



Graph Pooling—Hierarchical Graph Pooling

Supernode-based graph pooling:

In downsampling-based graph pooling, the information about the unselected
nodes is lost as these nodes are discarded. Supernode-based pooling meth-
ods aim to coarsen the input graph by generating supernodes. Specifically,
they try to learn to assign the nodes in the input graph into different clus-
ters, where these clusters are treated as supernodes.

There are three key parts in a supernode-based graph pooling layers:

• Generate supernodes as the nodes for the coarsened graph.

• Generate graph structure for the coarsened graph.

• Generate node features for the coarsened graph.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 50 / 57



Graph Pooling—Hierarchical Graph Pooling

Ying et al., Hierarchical Graph Representation Learning with Differentiable Pooling,

NIPS 2018

DiffPool learns a soft assignment matrix from the nodes in the input graph
to the supernodes by using a GCN filter as follows:

S(l) = softmax(GCNFilter(l),pool(A
(l),F(l))) (42)

where S(l) ∈ RNl×Nl+1 is a cluster assignment matrix at layer l , each row of
S(l) corresponds to one of the Nl nodes at layer l and each column of S(l)

corresponds to one of the Nl+1 clusters (supernode) at the next layer l +1.
The softmax function is applied row-wisely; hence, each row is normalized
to have a summation of 1. The j-th element in the i-th row indicates the
probability of assigning the i-th node to the j-th supernode.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 51 / 57



Graph Pooling—Hierarchical Graph Pooling

With the assignment matrix S, the graph structure for the coarsened graph
and the node features for the supernodes can be generated by:

A(l+1) = S(l)TA(l)S(l); F(l+1) = S(l)TZ(l) (43)

where
Z(l) = GCNFilter(l),embed(A

(l),F(l))

is the node embedding at layer l .

Note that, the two GCNFilters consume the same input data but have dis-
tinct parameterizations and play separate roles: GCNFilter(l),embed generates
new embeddings for the input nodes at layer l , while the GCNFilter(l),pool
generates a probabilistic assignment of the input nodes to clusters Nl+1.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 52 / 57



Graph Pooling—Hierarchical Graph Pooling

Ma et al., Graph Convolutional Networks with EigenPooling, KDD 2019

EigenPooling generates the supernodes using spectral clustering methods,
which first constructs a set of non-overlapping clusters (Nop) being regarded
as the supernodes for the coarsened graph. Given the list of nodes in the
k-th cluster Γ k , a sampling operator Ck ∈ {0, 1}Nip×Nk

is defined as:

Ck
ij = 1 if and only if Γ k

j = vi (44)

where Γ k
j = vi means node vi corresponds to the j-th node in k-th cluster.

Then, the adjacency matrix for the k-th cluster can be defined as:

Ak = CkT
AipCk (45)

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 53 / 57



Graph Pooling—Hierarchical Graph Pooling

To form the graph structure between the supernodes, only the connections
across the clusters in the original graph are considered. To this end, we
first generate the intra-cluster adjacency matrix, which only consists of the
edges within each cluster as:

Aintra =

Nop∑
k=1

CkAkCkT
(46)

Then, the inter-cluster adjacency matrix, which consists of the edges across
the clusters, can be presented as Ainter = A − Aintra, and the adjacency
matrix for the coarsened graph can be obtain by:

Aop = STAinterS (47)

where S ∈ RNip×Nop is an assignment matrix, which indicates whether a
node belongs to a specific subgraph as:

Sij = 1 if and only if vi ∈ Γ j (48)

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 54 / 57



Outline

1 Preliminaries

2 Spectral-based Graph Filters

3 Spatial-based Graph Filters

4 Graph Pooling

5 Advanced GNN

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 55 / 57



Graph Autoencoders

• Graph Autoencoders.

• Spatial-Temporal GNN.

• GNN on Complex Graphs.

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 56 / 57



The End!

Jianglin Lu (NEU) jianglinlu@outlook.com Graph Neural Network 57 / 57


	Preliminaries
	Spectral-based Graph Filters
	Spatial-based Graph Filters
	Graph Pooling
	Advanced GNN

