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Preliminaries—Why Learning with Noisy Labels

The success of deep neural networks depends on access to high-quality
labeled training data, as the presence of label errors (label noise) in training
data can greatly reduce the accuracy of models on clean test data.

Unfortunately, large training datasets almost always contain examples with
inaccurate or incorrect labels. This leads to a paradox: on one hand, large
datasets are necessary to train better deep networks, while on the other
hand, deep networks tend to memorize training label noise, resulting in
poorer model performance in practice.
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Preliminaries—Categories

Statistically Inconsistent Method

Employing heuristics to reduce the side-effect of noisy labels, e.g., se-
lect reliable examples, reweight examples, correct labels, employ side
information, (implicitly) add regularization.

Note: the differences between the learned classifiers and the optimal ones
for clean data are not guaranteed to vanish, i.e., no statistical consistency
has been guaranteed.

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
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Preliminaries—Categories

The issue of statistically inconsistent method motivates researchers to ex-
plore algorithms in another category: risk-/classifier- consistent algorithms.

Statistically Consistent Method

Risk-consistent methods possess statistically consistent estimators to
the clean risk (i.e., risk, w.r.t. the clean data), while classifier-
consistent methods guarantee the classifier learned from the noisy data

is consistent to the optimal classifier (i.e., the minimizer of the clean
risk).

Utilizing noise transition matrix, denoting the probabilities that clean labels
flip into noisy labels, to build consistent algorithms.

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
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Preliminaries—Categories

An estimator is risk-consistent if, by increasing the size of noisy samples, the
empirical risk calculated by noisy samples and the modified loss function will
converge to the expected risk calculated by clean examples and the original
loss function.

An algorithm is classifier-consistent if, by increasing the size of noisy exam-
ples, the learned classifier will converge to the optimal classifier learned by
clean examples.

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
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Preliminaries—Definitions

Problem Definition

Let D be the distribution of a pair of random variables (X, Y) ¢ A" x
{1,2,..., C}, where the feature space X' C IR and C is the size of label
classes. Our goal is to predict a label y for any given instance x & .
However, in many real-world classification problems, training examples
drawn independently from distribution D are unavailable. Before being
observed, their true labels are independently flipped and what we can
obtain is a noisy training sample {X;, Y;}/ |, where Y denotes the
noisy label. Let 7 be the distribution of the noisy random variables
(X,Y)e X x{1,2,...,C}.

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
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Preliminaries—Definitions

Transition Matrix

The random variables Y and Y are related through a noise transition
matrix T & [0,1]°“, where the jj-th entry of the transition matrix

Ti(x) = P(Y = J|Y = i, X = x) represents the probability that the
instance x with the clean label Y =/ will have a noisy label Y = ;.

Yao et al. Dual T: reducing estimation error for transition matrix in label-noise Learning. NeurlPS, 2020
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Preliminaries—Definitions

Two Representative Transition Matrix T

Symmetry flipping: Asymmetric pair flipping:
1—¢ ﬁ Cil ﬁ 1—¢ € 0
1 l-€¢ 5 = 0 1—€¢ € 0
T= ; : T= ;
é 6 CE—I 1:6 Cil 0 1—c¢ €
i a1 o e Lloe _ € R
where C is the number of class and ¢ is the noise rate.

Han et al. A Survey of Label-noise Representation Learning: Past, Present and Future. arXiv, 2021
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Preliminaries—Definitions

Note that, the clean class posterior P(Y|x) = [P(Y =1|X = x), ..., P(Y =
C|X = x)]7 can be inferred by using the transition matrix and the noisy
class posterior P(Y|x) = [P(Y = 1|X = x),...,P(Y = C|X = x)]T, i.e.,
we have

P(Y = 1|X = x)
P(Y|x) = j 1)

P(Y = C|X = x)
P(Y=1,Y=1X=x)+ - +P(Y=1Y=C|X=x)

= : @)
P(Y=CY=1X=x)+--+P(Y=CY=C|X=x)
PY=1Y=1,X=x) -+ P(Y=C|Y=1,X=x) P(Y =1|X = x)

= i : i : i ®
PY=ClY=1,X=x) - PY=ClY=1X=x) P(Y = C|X =x)

=T() - P(YIx) (4)

Note: P(Y =1,Y =1X=x)=P(Y=1Y=1,X=x)-P(Y =1|X = x).

Yao et al. Dual T: reducing estimation error for transition matrix in label-noise Learning. NeurlPS, 2020
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Preliminaries—Definitions

Anchor Points

Anchor Points are widely used to estimate the transition matrix, which
are defined in the clean data domain. An instance x is an anchor point
for the class i if P(Y = i|X = x) is equal to one or close to one. Given
an anchor point x, we have P(Y = k|X = x) =0, Vk # i. Then, we
have: P(Y =j|X =x) = 3.5, TiiP(Y = k|X = x) = Tj.

That is to say, T can be obtained via estimating the noisy class pos-
terior probabilities for anchor points.

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
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Statistically Inconsistent Classifiers

® Early Stopping

® Select Reliable Examples
® Correct Labels

® Add Regularization
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Early Stopping

Progressive Early Stopping (PES)

Motivation: A DNN can be considered as a composition of a series of layers,
and we find that the latter layers in a DNN are much more sensitive to label
noise, while their former counterparts are quite robust. Selecting a stopping
point for the whole network may make different DNN layers antagonistically
affect each other, thus degrading the final performance.

Bai et al. Understanding and Improving Early Stopping for Learning with Noisy Labels. NIPS, 2021
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Early Stopping

Method: PES

Test accuracy

Test accuracy
Test accuracy
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Figure 1: We train a ResNet-18 model on CIFAR-10 with three types of noisy labels and evaluate the
impact of noisy labels on the representations from the 9-th layer, the 17-th layer, and the final layer.
The X-axis is the number of epochs for the first block of the network. The curves present the mean of
five runs and the best performances are indicated with dotted vertical lines.
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Figure 2: Performance of the traditional early stopping trick and the proposed PES on CIFAR-10
with different types of label noise. The lines present the mean of five runs.

Bai et al. Understanding and Improving Early Stopping for Learning with Noisy Labels. NIPS, 2021
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Early Stopping

Method: PES

Assume the whole network f(+; ©) can be constituted with L DNN parts:

Z] = ﬂ (X; el) )
Z/:f/(Z/_]_;@/), /:2,...,L
where fi(-; ©y) is the /-th DNN part and z, is the corresponding output. We

initially optimize the parameter ©1 for the first part by training the whole
network for T; epochs with the following objective:

Bai et al. Understanding and Improving Early Stopping for Learning with Noisy Labels. NIPS, 2021
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Early Stopping

Method: PES

Then, we keep the obtained parameter O7 fixed, reinitialize and progressively
learn the /-th (/ = 2,...,L) DNN part with the parameters for preceding
DNN parts fixed. The training procedure is conducted with T; epochs by
optimizing the following objective:

m|n Zﬁ (xi; S ,011,0,...,01),3i), I=2...L

..Or N~

Since latter DNN parts are more sensitive to noisy labels than their former
counterparts, we gradually reduce the training epochs (i.e., T1 > Tp >
- > T}) to better exploit the memorization effect.

Bai et al. Understanding and Improving Early Stopping for Learning with Noisy Labels. NIPS, 2021
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Early Stopping

Method: PES

Algorithm 1: Progressive Early Stopping with Semi-Supervised Learning

Input: Neural network with trainable parameters © = {©;,...,0.}, Noisy training dataset
{@x;, i) }"_;, Number of training epochs for different part: T3, ..., Tz, and training epochs T,
for refining with confident examples.
fori=1,....Ty do

| Optimize network parameter © with Eq. (3);

fori=1,...,T;do
| Optimize network parameter {©;, ..., O} with Eq. (4);

Unfroze ©;

fori=1,...,T.do
Extract confident example set D; and unlabeled set D, with classifier f(-, ©) by Eq. (7):
Training the classifier f(-, ©) with MixMatch loss on D; and D,,:

Evaluate the obtained classifier f(-, ©).

Bai et al. Understanding and Improving Early Stopping for Learning with Noisy Labels. NIPS, 2021
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Select Reliable Examples
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Select Reliable Examples

Learning Data-Driven Curriculum for Very Deep Neural Networks
on Corrupted Labels (MentorNet)

Motivation 1: Deep CNNs are more prone to overfitting and memorizing
corrupted labels. To address this issue, we focus on training very deep
CNNs from scratch.

Motivation 2: Existing curriculums are usually predefined and remain fixed
during training, ignoring the feedback from the student. Moreover, the alter-
nating minimization requires alternative variable updates, which is difficult
for training very deep CNNs via mini-batch stochastic gradient descent.

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. ICML, 2018
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Select Reliable Examples

Preliminary on Curriculum Learning:

Curriculum Learning

Curriculum Learning (CL) is a learning paradigm inspired by the cogni-
tive process of human and animals, in which a model is learned grad-
ually using samples ordered in a meaningful sequence. A reasonable
curriculum can help the student focus on the samples whose labels
have a high chance of being correct.

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networkson Corrupted Labels. ICML, 2018
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Select Reliable Examples

Preliminary on Curriculum Learning:

Let gs (xj, w) denote the discriminative function of a neural network called
StudentNet parameterized by w € RY, and L (y;, gs (x;, w)), a m-dimensional
column vector, denote the loss over m classes. Introduce the latent weight
variable v € [0, 1]"*™, and optimize the objective:

min F(w,v) vI L (yi, gs (xi,w)) + G(v; \) + 0]|wl[3
weR? ve[0,1]7xm ( ’z_; (v, &5 (xi,w)) (v; A) + 0flw]3

where v; € [0,1]™*1 is a vector to represent the latent weight variable for
the /-th sample, and the function G defines a curriculum parameterized by

A

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networkson Corrupted Labels. ICML, 2018
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Select Reliable Examples

A predefined curriculum known as self-paced learning optimizes v by:
vi=1(0; < )\),Vie€[ln]
where we denote the loss L (y;, gs (xi,w)) = ¢;, 1 as the indicator function.

A When updating v with fixed w, a sample of smaller loss than the threshold
A is treated as an easy sample, and will be selected in training (v = 1).

A When updating w with fixed v, the classifier is trained only on the se-
lected “easy” samples. The hyperparameter A controls the learning pace
and corresponds to the “age” of the model. When X is small, only samples
of small loss will be considered. As A grows, more samples of larger loss will
be gradually added to train a more “mature” model.

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networkson Corrupted Labels. ICML, 2018
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Select Reliable Examples

Method: MentorNet

During training, MentorNet provides a curriculum (sample weighting scheme)
for StudentNet to focus on the sample the label of which is probably correct.
MentorNet can be learned to approximate an existing predefined curriculum
or discover new data-driven curriculums from data.

The MentorNet g, is learned to compute time-varying weights for each
training sample. Let © denote the parameters in g,,. Given a fixed w, our
goal is to learn an ©* to compute the weight:

gm(zi; ©%) = arg min F(w,v),Vi € [1,n]
v;i€[0,1]

where z; = 6(x;,y;,w) indicates the input feature to MentorNet about the
i-the sample.

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networkson Corrupted Labels. ICML, 2018
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Select Reliable Examples

Learning to Approximate Predefined Curriculums:

The first task is to learn a MentorNet to approximate a predefined curricu-
lum. To do so, we minimize the following objective:

arg mei)n Z gm(2ii©) i+ G (gm (21:©): M)
(Xi,}’i)GD

We employ the following predefined curriculum:

Z )\QV )\1—|—/\1) v

where A1, A1 > 0 are hyper-parameters.

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. ICML, 2018
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Select Reliable Examples

Learning to Approximate Predefined Curriculums:
Given a fixed w, we define Fy(v) = Y 1,  (vi):
I, 5
f(v;) =vil; + §>\QV,- — ()\1 + >\2) Vi
By setting 0f /Ov; = 0, we have:

. 1(4 < \1) A2 =0
gm (2 © ):{ min (max (0,1— Z’;:“),l) A2 #0

where ©* is the optimal MentorNet parameter obtained by SGD.

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. ICML, 2018
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Select Reliable Examples

Learning Data-Driven Curriculums:

© can be learned on another dataset D’ = {(¢ (xj, yi,w), v)} where (x;, yi)
is sampled from D and |D'| < |D|. v/ is a given annotation and we
assume it approximates the optimal weight, i.e., v;" >~ argmin,, cjo 1] F(v,w).
Specifically, we assign binary labels to v/, where v = 1 iff y; is a correct
label. As v/ is binary, © is learned by minimizing the cross-entropy loss

between v/ and g (z;; ©).

The information on the correct label may not always be available on the
target dataset D. In this case, we learn the curriculum on a different small
dataset where the correct labels are available.

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networkson Corrupted Labels. ICML, 2018
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Select Reliable Examples

SPADE (Scholastic gradient PArtial DEscent)

The partial gradient update on
weight parameters is performed
when G is used (Step 9). Oth-
erwise, we directly apply the
weights computed by the learned
MentorNet (Step 11). The cur-
riculum can change during train-
ing. In Step 6, the MentorNet
parameter © is updated to adapt
to the most recent model param-
eters of StudentNet. In experi-
ments, we update © twice after
the learning rate is changed.

1
2
3

e ® &

Algorithm 1 SPADE for minimizing Eq. (1)

Input :Dataset D, a predefined G or a learned g, (-; ©)
Output : The model parameter w of StudentNet.
Initialize wo, vl t=0
while Not Converged do
Fetch a mini-batch =; uniformly at random
For every (x;,;) in Z; compute ¢(x;,yi, w")
if update curriculum then

| © « O, where ©™ is learned in Sec. 3.1
end
if G is used then

| vEevE! -V F(w! ™l vt s,
end
else Vi < gm(p(Ze, w'1);0);
wh—wih -, Vo F(wi™t vh)z,
t—t+1

end
return w'

Jiang et al. MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networkson Corrupted Labels. ICML, 2018
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Select Reliable Examples

Robust Training of Deep Neural Networks (Co-Teaching)

Motivation: recent studies on the memorization effects of deep neural net-
works show that they would first memorize training data of clean labels and

then those of noisy labels.

Han et al. Co-teaching: Robust Training of Deep Neural Networks with Extremely:Noisy Labels. NeurlPS, 2018
Learning with Label Noise 31/86
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Select Reliable Examples

Method: Co-Teaching

M-Net Decoupling Co-teaching

P e N
|
I

Mini-batch 1, (A) 1(a) (&)

1
|
I
|
Mini-batchz: (2) nu(®) &) )==() :
| 1= |
Mlnlhatch3| o o ” o\ _'I

- __—_a ‘b-—___/

Figure 1: Comparison of error flow among MentorNet (M-Net) [17], Decoupling [26] and Co-
teaching. Assume that the error flow comes from the biased selection of training instances, and error
flow from network A or B is denoted by red arrows or blue arrows, respectively. Left panel: M-Net
maintains only one network (A). Middle panel: Decoupling maintains two networks (A & B). The
parameters of two networks are updated, when the predictions of them disagree (!=). Right panel:
Co-teaching maintains two networks (A & B) simultaneously. In each mini-batch data, each network
samples its small-loss instances as the useful knowledge. and teaches such useful instances to its peer
network for the further training. Thus, the error flow in Co-teaching displays the zigzag shape.

Han et al. Co-teaching: Robust Training of Deep Neural Networks with Extremely:Noisy Labels. NeurlPS, 2018
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Select Reliable Examples

Method: Co-Teaching
Algorithm 1 Co-teaching Algorithm.

1: Input wy and wy, learning rate 7, fixed 7, epoch Ti and Ty, iteration N
forT =1,2,.... 1. do
2: Shuffle training set D; //moisy dataset
for ;"'V— = 1.. P ,J‘szxx do
3: Fetch mini-batch D from D
4: Obtain Dy = argming,, s pery o) £, D');  /sample R(T)% small-loss instances
5: Obtain D, = ATg Minp:, p > gery o) £(g, P'): Msample R(T)% small-loss insllances
6: Update wy = wy — nVI(f,Dy); /tupdate wy by Dy:
7: Update w, = wy, —nV{(g, Dy); /tupdate wy by Dy;
end

8: Update R(T') = 1 — min {-}%T,T}:

end
9: Output wy and w,.

In each mini-batch of data, each network views its small-loss instances as
the useful knowledge, and teaches such useful instances to its peer network
for updating the parameters.

Han et al. Co-teaching: Robust Training of Deep Neural Networks with Extremely:Noisy Labels. NeurlPS, 2018
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Select Reliable Examples

Robust Training of Deep Neural Networks (Co-Teaching)

Q 1: Why can sampling small-loss instances help us find clean instances?

Answer: Intuitively, when labels are correct, small-loss instances are more
likely to be the ones which are correctly labeled. Deep networks will learn
clean and easy pattern in the initial epochs. So, they have the ability to
filter out noisy instances using their loss values at the beginning of training.

Q 2: Why do we need two networks and cross-update the parameters?

Answer: Intuitively, different classifiers can generate different decision bound-
aries and then have different abilities to filter out the label noise. This mo-
tivates us to exchange the selected small-loss instances, so that these two
networks can adaptively correct the training error by the peer network if the
selected instances are not fully clean.

Han et al. Co-teaching: Robust Training of Deep Neural Networks with Extremely:Noisy Labels. NeurlPS, 2018
Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 34 /86



Select Reliable Examples

Pytorch Code: Co-Teaching

Loss functions

f loss_coteaching(y_1, y_2, t, forget_rate, ind, noise_or_not):
loss_1 = F.cross_entropy(y_1, t, reduce = False)
ind_1_sorted = np.argsort(loss_1.data).cuda()
loss_1_sorted = loss_1[ind_1_sorted]

loss_2 = F.cross_entropy(y_2, t, reduce = False)
ind_2_sorted = np.argsort(loss_2.data).cuda()
loss 2 sorted = loss_2[ind_2_sorted]

remember_rate = 1 - forget_rate
num_remember = int(remember_rate * len(loss_1_sorted))

pure_ratio_1 = np.sum(noise_or_not[ind[ind_1_sorted[:num_remember]]])/float(num_remember)
pure_ratio_2 = np.sum(noise_or_not[ind[ind_2_sorted[:num_remember]]])/float(num_remember)

ind_1_update=ind_1_sorted[:num_remember]
ind_2_update=ind_2_sorted[ :num_remember]
# exchange

loss_1_update = F.cross_entropy(y_1[ind_2_update], t[ind_2_update])
loss_2_update = F.cross_entropy(y 2[ind_1_update], t[ind_1_update])

return torch.sum(loss_1_update)/num_remember, torch.sum(loss_2_update)/num_remember, pure_ratio_1, pure_ratio_2

Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 35/86



Select Reliable Examples

Disagreement Help Generalization against Label Corruption
(Co-Teaching+)

Motivation 1: With the increase of epochs, two networks converge to a
consensus and Co-teaching reduces to the self-training MentorNet.

Motivation 2: To address the consensus issue in Co-teaching, we should con-
sider how to always keep two networks diverged within the training epochs,
or how to slow down the speed that two networks will reach a consensus
with the increase of epochs.

Yu et al. How does Disagreement Help Generalization against Label Corruption? ICML, 2019
Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 36 /86




Select Reliable Examples

Method: Co-teaching+

Disagreement ~—— Coteaching ~—— Co-teaching+

Total Variation

0 7 50 5 100 135 50 175 200
Epoch

Figure 1. Comparison of divergence (evaluated by Total Varia-
tion) between two networks trained by the “Disagreement” strat-
egy, Co-teaching and Co-teaching+, respectively. Co-teaching+
naturally bridges the “Disagreement” strategy with Co-teaching.

-
-

Mini-batch 1 (A)
1 !

Mini—batchl' (a) '| (a) l e
Mlm-batch3| 0 I' o\'

___I ~.____,

Figure 2. Comparison of error flow among MentorNet (M-Net),
Co-teaching and Co-teaching+. Assume that the error flow
comes from the selection of training instances, and the error flow
from network A or B is denoted by red arrows or blue arrows,
respectively. Left panel: M-Net maintains only one network
(A). Middle panel: Co-teaching maintains two networks (A & B)
simultaneously. In each mini-batch data, each network selects its
small-loss data to teach its peer network for the further training.
Right panel: Co-teaching+ also maintains two networks (A &
B). However, two networks feed forward and predict each mini-
batch data first, and keep prediction disagreement data (!=) only.
Based on such disagreement data, each network selects its small-
loss data to teach its peer network for the further training.

Yu et al. How does Disagreement Help Generalization against Label Corruption? ICML, 2019
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Select Reliable Examples

Method: Co-teaching+

Disagreement-Update: prediction
disagreement data D’

7-_)/ = {(Xia)/i) : )_’,'(1) a )7,'(2)}

Cross-Update: A(e) controls how
many small loss data should be se-
lected in each training epoch

—E
A(e) = 1—min {iT, <1 + eik) T}
Ej Emax — Ex

where E;, = 10 and Eqax = 200.

Algorithm 1 Co-teaching+. Step 4: disagreement-update;
Step 5-8: cross- updale

1: Input w' and w®, training set D, batch size B, learning rate
7, estimated noise rate 7, epoch Ey and Fmax:
fore=1,2,..., Fmax do

2: Shuffle D into IDI mini-batches;
forn=1,..., IDI do

3: Fetch n- th mini-batch D from D;
4: Select prediction disagreement D' by Eq. (1);

50 Get D' = argminppr 2o LD w )
flsample )\(e)% small-loss instances

/fnoisy dataset

6 Get D' = ATg MDD e > A ()| D |€('D w' j
ftsample A(e)% small-loss mstances
7: lp(lnte w®) = — an(D ;wM);  Jrupdate
w® by D',
Update w? ) _ w® — i D W:w®):  Jjupdate
(’z) by D'V
end
9: Update A(e) = 1 —min{ —r.rhor 1 —min{g£-7 (1+
eI
Fom- )T
end

10: Output w") and w®,

Yu et al. How does Disagreement Help Generalization against Label Corruption? ICML, 2019
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Select Reliable Examples

Combating Noisy Labels by Agreement: A Joint Training Method
with Co-Regularization (JoCoR)

Motivation: Co-teaching+ and Decoupling introduce the Disagreement strat-
egy, where “when to update” depends on a disagreement between two dif-
ferent networks. However, there are only a part of training examples that
can be selected by the Disagreement strategy, and these examples cannot be
guaranteed to have ground-truth labels. Therefore, there arises a question

to be answered: /s Disagreement necessary for training two networks to deal
with noisy labels?

Wei et al. Combating Noisy Labels by Agreement: A Joint Training Method with Co-Regularization. CVPR, 2020
Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 39/86




Select Reliable Examples

Method: JoCoR
E(XI') = (1 - )‘) * esup (Xia}/i) + A * Leon (xi)

where we use Cross-Entropy Loss as the supervised part to minimize the
distance between predictions and labels:

lsup (X, 1) = Lo (Xi, yi) + Loz (Xi, i)

I

\
M=
M=
<
S
)
x
T
M=
M=
<
S
)
x

i=1 m=1 i=1 m=1

and utilize the contrastive term as Co-Regularization (which maximizes the
agreement between two classifiers) to make the networks guide each other:

leon = Dxr, (p1]|p2) + Dk (p2]|p1)

where D, (Pullp2) = 310y Sy PT (%) log ﬁgnﬁii

Wei et al. Combating Noisy Labels by Agreement: A Joint Training Method with Co-Regularization. CVPR, 2020
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Select Reliable Examples

Method: JoCoR

Algorithm 1 JoCoR
. Input: Network [ with ® = {®,©}, learning rate 7,
Small-loss Selection: fixed 7, epoch T}, and Tyax, iteration Jpay;

1: fort=12,...,Th do

2 Shuffle training set D;

3 forn=1,..., [h.y do

4 Fetch mini-batch D,, from D;
5 py = f(2,01), Ve € Dy

6 Py = f(2,02),Va € Dy;
7.
8
9

D, = ar min (D!

" o 2RI, (Dn)
After obtaining the small-loss in-
stances, we calculate the average
loss on these examples for further

backpropagation:

Calculate the joint loss ¢ by (1) using p; and p,;
Obtain small-loss sets En by (4) from D,,;
: Obtain L by (5) on D,,;
10: Update ©® = © — nVL;

1 11:  end for
. — 1 —mi L
[ = = Z €(x) 122 Update R(t) = 1 mln{Tk T,T}
|D| o 13: end for
xeD Output: ©; and O,

Wei et al. Combating Noisy Labels by Agreement: A Joint Training Method with Co-Regularization. CVPR, 2020
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Select Reliable Examples

Method: JoCoR
Mini-batch 1
Mini-batch 2

Mini-batch 3

Figure 1. Comparison of error flow among MentorNet (M-Net)
[16], Decoupling [23], Co-teaching+ [41] and JoCoR. Assume
that the error flow comes from the biased selection of training in-
stances, and error flow from network A or B is denoted by red
arrows or green arrows, respectively. First panel: M-Net main-
tains only one network (A). Second panel: Decoupling maintains
two networks (A&B). The parameters of two networks are up-
dated, when the predictions of them disagree (!=). Third panel: In
Co-teaching+, each network teaches its small-loss instances with
prediction disagreement (!=) to its peer network. Fourth panel:
JoCoR also maintains two networks (A&B) but trains them as a
whole with a joint loss, which makes predictions of each network
closer to ground true labels and peer network’s.

Wei et al. Combating Noisy Labels by Agreement: A Joint Training Method with Co-Regularization. CVPR, 2020
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Correct Labels
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@ Statistically Inconsistent Classifiers

Add Regularization
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Statistically Consistent Classifiers

Categories of Label Noise

® Random Classification Noise (RCN): each label is flipped independently
with a constant probability p.

® Class-Conditional Random Label Noise (CCN): the flip probabilities
(noise rates) p, are the same for all labels from one certain class y.

® Instance- and Label-Dependent Noise (ILN): the flip rate p,(x) is de-
pendent on both the instance x and the corresponding true label y.

Cheng et al. Learning with Bounded Instance- and Label-Dependent Label Noise. ICML, 2020
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© Statistically Consistent Classifiers
Random Classification Noise (RCN)

Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 47 /86



© Statistically Consistent Classifiers

Class-Conditional Random Label Noise (CCN)
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Class-Conditional Random Label Noise (CCN)

Learning Without Anchor Points (T Revision)

Motivationl: when there are no anchor points in datasets, how to maintain
the efficacy of those consistent algorithms?

Motivation2: existing risk-consistent estimators involve the inverse of transi-
tion matrix, which degenerates classification performances and makes tuning
the transition matrix ineffectively. How to design a risk-consistent estimator
that does not involve the inverse of the transition matrix?

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 49 /86




Class-Conditional Random Label Noise (CCN)

Method: Risk-Consistent Estimator Using Importance Reweighting

where I(f(X), i) = %W(X), i.

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
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Class-Conditional Random Label Noise (CCN)

Method: Reweight T-Revision

Neura! Network s
Training Sample [~ [ [U: 3 |- PO (T +41) 'g(x) = P(FIX)
- =3 (T +a7) | v
[ ) Unweighted Loss R,(f)
_ 1~ gy (X) v
Rnw(T»f):_ Tt f(Xl)’Y’
) nZ(TTg)\—/‘_(X;) ( )

i=1

where g(x) = FA’(\Z|X =x) = P(YIX = x), TTg(x) = (T + AT)Tg(x)
P(Y|X =x) = P(Y|X =x)

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
Learning with Label Noise 51/86
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Class-Conditional Random Label Noise (CCN)

Pytorch Code:

Step 1: Train data with unweighted
loss to learn an initial transition ma-
trix T, epoch = 20.

with torch.no_grad():
model.eval()
for index, (batch_x,batch_y) in enumerate(estimate_loader]
batch_x = batch_x.cuda()
out = model(batch_x, revision=False)
out = F.softmax(out,dim=1)
out = out.cpu()
if index <= index_num:
a[epoch] [index*args.batch_size: (index+1)*args.bal
else:
A[epoch][index_num*args.batch_size, len(train_de

for epoch in range(args.n_epoch_estimate):

print(‘epoch {}'.format(epoch + 1))
model.train()

a.

train_acc = @.

val_loss = @.

val_acc = o.

train_loss

for batch_x, batch_y in train_loader:
batch_x = batch_x.cuda()
batch_y = batch_y.cuda()
optimizer_es.zero_grad()
out = model(batch_x, revision=False)
loss = (cut, batch_y)
train_loss += loss.item()
pred = torch.max(out, 1)[1]
train_correct = (pred == batch_y).sum()
train_acc += train_correct.item()
loss.backward()
optimizer_es.step()

Xia et al. Are anchor points really indispensable in label-noise learning. NeurlPS, 2019
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Class-Conditional Random Label Noise (CCN)

Pytorch Code- for epoch in range(args.n_epoch):
print(‘epoch {}".format(epoch + 1))

# training--------------—---—-------—--

train_loss = o.

train_acc = eo.

val_loss = 0.

val_acc = @.

eval_loss = o.

eval_acc = 0.

scheduler.step()

model.train()

for batch_x, batch_y in train_loader:
batch_x = batch_x.cuda()

Step 2: Update network using batch_y = batch_y.cuda()
. optimizer.zero_grad()
weighted loss Aand the learned tran- out = model(batch x, revision-False)

sition matrix T, epoch = 200. prob = F.softmax(out, dim=1)
prob = prob.t()
loss = (uut, T, batch_y)
out_forward = torch.matmul(T.t(), prob)
out_forward = out_forward.t()
train_loss += loss.item()

pred = torch.max(out_forward, 1)[1]
train_correct = (pred == batch_y).sum()
train_acc += train_correct.item()
loss.backward()

optimizer.step()
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Class-Conditional Random Label Noise (CCN)

Pytorch Code- for epoch in range(args.n_epoch_revision):
print(‘epoch {}'.format(epoch + 1))
# training----------=-----mmmmemeo o

train_loss = e.

train_acc = 0.

val_loss = @.

val_acc = o.

eval_loss = @.

eval_acc = o0,

model.train()

for batch_x, batch_y in train_loader:

batch_x = batch_x.cuda()

Step 3: Train data using weighted batch_y = batch_y.cuda()

. e optimizer_revision.zero_grad()
|OSS Y\Vlth the |earned transition ma- out, correction = model(batch_x, revision=True)
trix T to learn AT, epoch = 200. prob = F.softmax(out, dim=1)

prob = prob.t()

loss = IGERIHIGMNESESEN|(out, T, correction, batch_ y)
out_forward = torch.matmul((T+correction).t(), prob)
out_forward = out_forward.t()

train_loss += loss.item()

pred = torch.max(out_forward, 1)[1]

train_correct = (pred == batch_y).sum()

train_acc += train_correct.item()

loss.backward()

optimizer_revision.step()
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Class-Conditional Random Label Noise (CCN)

Reducing Estimation Error for Transition Matrix (Dual T)

Motivation: Anchor points are hard to identify, but can be learned from
noisy data by x/ = arg max, P(Y = i|x), which means that learning anchor
points relies heavily on the estimation of the noisy class posterior. However,
the estimation error for noisy class posterior could be large due to the ran-
domness of label noise, which would lead the transition matrix to be poorly
estimated.

Motivation2: the estimation error of the noisy class posterior is significantly
larger than that of the clean class posterior. How to find an alternative
estimator that avoids directly using the estimated noisy class posterior to
approximate the transition matrix.

Yao et al. Dual T: reducing estimation error for transition matrix in label-noise Learning. NeurlPS, 2020
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Class-Conditional Random Label Noise (CCN)

Method: Introduce An Intermediate Class And Factorize T As:
Tj=P(Y =jlY =1i)
= Y P(Y=iY'=IY=))

le{1,...,C}
= Y PY=jY=LY=)PY =IY=i
1e{1,...,C}

£ TMY =0T}

le{1,...,C}

where Y’ represent the random variable for the introduced intermediate class,
(Y =i) = P(Y =j]Y' =1,Y =) represents the transition from the clean

and intermediate class labels to the noisy class labels, and T* = P (Y’ = I|Y = i)

represents the transition from the clean labels to the intermediate class labels.

Yao et al. Dual T: reducing estimation error for transition matrix in label-noise Learning. NeurlPS, 2020
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Class-Conditional Random Label Noise (CCN)

Estimate T,.‘,": TI;" =P(Y' =Y =)

We can design the intermediate class Y’ in such a way that P(Y’|x) £
P (Y|x), where P (Y|x) represents an estimated noisy class posterior, and
can be obtained by exploiting the noisy data at hand. |[f anchor points
are given, the estimation error for TI'," is zero, since we have access to
P(Y'|x) £ P (Y]|x) directly.

Yao et al. Dual T: reducing estimation error for transition matrix in label-noise Learning. NeurlPS, 2020
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Class-Conditional Random Label Noise (CCN)

Estimate T TMY =i) =P (Y =Y =1,Y =)

Since the clean class labels are not available, we aim to eliminate the de-
pendence on clean class for T,j*. Specifically, if the clean class Y is less
informative for the noisy class Y than the intermediate class Y’, in other
words, given Y’, Y contains no more information for predicting Y, then Y
is independent of Y conditioned on Y’, i.e.,

TAY =i)=P(Y=jIY =1Y=i)=P(Y=jY =)

An sufficient condition for holding the above equalities is to let the inter-
mediate class labels be identical to noisy labels. Since it is hard to find an
intermediate class whose labels are identical to noisy labels, the mismatch
will be the main factor that contributes to the estimation error for T,j*.

Yao et al. Dual T: reducing estimation error for transition matrix in label-noise Learning. NeurlPS, 2020
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Class-Conditional Random Label Noise (CCN)

Estimate T/ TA(Y =i)=P (Y =j|Y' =)

Since the labels for the noisy class and intermediate class are available,
P (Y =Jj|Y' = l) is easy to estimate by just counting the discrete labels as:

o B < 1 rg max '=k|x;)=NAyi=j
TI" _ P(Y :j’Y/ _ /) _ ZI {(arg max, P(Y'=k|x;)=I)Ayi=j}
/ > Larg max, P(Y'=k|x)=1}

where 14 is an indicator function which equals one when A holds true and
zero otherwise. As we can see, we change the problem of estimating the
noisy class posterior into the problem of fitting the noisy labels. The noisy
class posterior is in the range of [0, 1] while the noisy class labels are in the
set {1,..., C}. Intuitively, learning the class labels are much easier than
learning the class posteriors.

Yao et al. Dual T: reducing estimation error for transition matrix in label-noise Learning. NeurlPS, 2020

Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 59 /86



Class-Conditional Random Label Noise (CCN)

Pytorch Code: Generating Two Transition Matrices:

def get_transition_matrices(est_loader, model):
model.eval()
est_loader.eval()
p=1]
T_spadesuit = np.zeros((args.num_classes,args.num_classes))
with torch.no_grad():
for i, (images, n_target,_ ) in enumerate(est_loader):
images = images.cuda()
n_target = n_target.cuda()
pred = model(images)
probs = F.softmax(pred, dim=1).cpu().data.numpy()
_, pred = pred.topk(1, 1, True, True)
pred = pred.view(-1).cpu().data
n_target = n_target.view(-1).cpu().data
for i in range(len(n_target)):
T_spadesuit[int(pred[i])][int(n_target[i])]+=1
p += probs[:].tolist()
T_spadesuit = np.array(T_spadesuit)
sum_matrix = np.tile(T_spadesuit.sum(axis = 1), (args.num_classes,1)).transpose()
T_spadesuit = I_spadesuit/sum_matrix
p = np.array(p)
T_clubsuit =| est_t_matrix(p,filter outlier=True)
T_spadesuit = np.nan_to_num(T_spadesuit)
return T_spadesuit, T_clubsuit
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Instance- and Label-Dependent Noise (ILN)
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Instance- and Label-Dependent Noise (ILN)

Part-dependent Label Noise (PTD)

Motivationl: Humans perceive instances by decomposing them into parts.
Annotators are therefore more likely to annotate instances based on the
parts rather than the whole instances, where a wrong mapping from parts
to classes may cause the instance-dependent label noise.

Motivation2: The noise of an instance depends only on its parts. We term
this kind of noise as part-dependent label noise.

Xia et al. Part-dependent Label Noise: Towards Instance-dependent Label Noise. NeurlPS;72020
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Instance- and Label-Dependent Noise (ILN)

Method: PTD

Since instances can be approximately reconstructed by a combination of
parts, we approximate the instance-dependent transition matrix for an in-
stance by a combination of the transition matrices for the parts of the

Instance.
- - ' ‘ weighted o N
- combination
Parts i N _— = - - Instance
part 1 part2 part 3 part 4 part s %
s
ES
@
ﬁ g @
é,
Part- Instance-
dependent p P2 P PS PS5 weighted T CETwE e
Transition Matrices T Transition Matrix

Figure 1: The proposed method will learn the transition matrices for parts of instances. The instance-
dependent transition matrix for each instance can be approximated by a weighted combination of the
part-dependent transition matrices.

Xia et al. Part-dependent Label Noise: Towards Instance-dependent Label Noise. NeurlPS;72020
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Instance- and Label-Dependent Noise (ILN)

The parts-based representation learning:

min Z |xi — Wh(x;)|3

WeRIX" h(x;)€RL || h(x;)|l;=1,i=1

where X = [xq,...,x,] € RY*" is data matrix, W is the matrix of parts
(each column of W denotes a part of the instances) and the h(x;) denotes
the combination parameters to reconstruct the instance x;.

We could identify the part-dependent transition matrices by assuming that

the parameters for reconstructing the instance-dependent transition matrix
are identical to those for reconstructing an instance:

x) & Z h;(x)P’
j=1

Xia et al. Part-dependent Label Noise: Towards Instance-dependent Label Noise. NeurlPS;72020
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Instance- and Label-Dependent Noise (ILN)

Let x' be an anchor point of the i-th class. We have:
Pr(?:“x:x’) :;Pr(\_/zﬂ Y:k,X:x')Pr<y_k|x:x’) =T,-J-(x")

If the instance-dependent transition matrix and combination parameters are
given, learning the part-dependent transition matrices is a convex problem:

2
c  k r
P, /;Trg?o]_cx:;g )_J:Zth(X/’)P{ ’

) 2

. =1,ie{l,...,chje{l,...,r},
where (x{,...,x}) are k anchor points of i-class.

Xia et al. Part-dependent Label Noise: Towards Instance-dependent Label Noise. NeurlPS;72020
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Appendix—PAC Learning Framework

® c: A concept c: X — ) is a mapping from X to V.

® (C: A concept class C is a set of concepts we may wish to learn.
® D: The unknown distribution D where the examples are independently
and identically distributed (i.i.d).

S = (x1,...,Xm): a sample drawn i.i.d. from D with the labels
(c(x1),...,c(xm)) that are based on a specific target concept ¢ € C
to learn.

H: a fixed set of possible concepts, called hypothesis set, that a learner
wants to consider.

h: a hypothesis h € H, where hs means the hypothesis hgs is selected
from # by using the labeled sample S.

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Appendix—PAC Learning Framework

Generalization Error

Given a hypothesis h € H, a target concept ¢ € C, and an underlying
distribution D, the generalization error or risk of h is defined by:

R(h)= P Th(x) # c(x)] = E [Lh(x)c(x)]

where 1, is the indicator function of the event w.

The generalization error of a hypothesis is not directly accessible to the
learner since both the distribution D and the target concept ¢ are unknown.

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Appendix—PAC Learning Framework

Empirical Error

Given a hypothesis h € #H, a target concept ¢ € C, and a sample S =
(x1,.-.,Xm), the empirical error or empirical risk of h is defined by:

Rs(h|) = Z Ui eion)

The empirical error of h € H is its average error over the sample S, while
the generalization error is its expected error based on the distribution D.

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.

Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 69 /86



Appendix—PAC Learning Framework

For a fixed h € H, the expectation of the empirical error based on an i.i.d.
sample S is equal to the generalization error:

Il
3|
Ms

SNDm [Rs(h)] < IEDm [1h(x,-)7$c(x,-)] (linearity of the expectation)

1

Ms

1 . .
. s EDm [lh(x#c(x)] (sample is drawn i.i.d.)

= B [Lhtoret]

= E_[Lhpgre(o]
= R(h)

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Appendix—PAC Learning Framework

PAC-Learning

A concept class C is said to be PAC-learnable if there exists an algorithm A:

<e€e>1-—
B IR(hs)<d21-0

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Appendix—Markov's Inequality

Markov's Inequality

Let X be a random variable that takes only nonnegative values. Then,
for any a > 0
’ E[X]
— ()

P(X > a) < S

Pr(X >a)

E[X] “

Figure 1: Markov's Inequality bounds the probability of the shaded region.

Lecture Notes CS:5360 Randomized Algorithms
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Appendix—Markov's Inequality

Proof: We define a new random variable / by:

' >
l:{l’ if X>a (6)

0, otherwise.
This is called an indicator variable for the event X > a.

When X > a, we have | = 1. Thus, % > 1 = 1[. If, on the other hand,
X < a, then as both X and a are non-negative, we have % >0=1.

Therefore, in either case, we have the inequality § > 1.

This implies the inequality of their expected values: E [é] >E[/] ie.,

E[f] [X]>]E[I] 0-P(0)+1-P(1) =P(1) =P(X >a) (7)

Here, we complete the proof. O

Renjie Liao, Notes on Rademacher Complexity
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https://lrjconan.github.io/notes/Notes_on_Rademacher_Complexity.pdf

Appendix—Chebyshev's Inequality

Chebyshev's Inequality

For any a > 0,

B(IX ~ EIX]| > 2) < 2L ©

Pr((X — E[X]) = a)

E[X]

Figure 2: Chebyshev’s Inequality bounds the probability of the shaded regions.

Lecture Notes CS:5360 Randomized Algorithms

Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 74 /86


https://homepage.cs.uiowa.edu/~sriram/5360/fall18/notes/9.10/week4Notes.pdf

Appendix—Chebyshev's Inequality

Proof:
P(IX —E[X]| > a) = P((X — E[X])* > &) = P(Y > &) (9)

where Y = (X — E[X])?. Note that Y is a non-negative random variable.
Therefore, using Markov's Inequality, we have:

E[Y] E((X—-E[X])?)  Var[X]

2 _ _

P(Y > a%) < o g = (10)
Here, we complete the proof. O

Lecture Notes CS:5360 Randomized Algorithms
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Appendix—Hoeffding's Lemma

Hoeffding's Lemma

Let X be a random variable with E[X] = 0and a < X < bwith b > a.
Then, for any t > 0, the following inequality holds:

t2(b—a)?

E[e*] <e & - (11)

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
Renjie Liao, Notes on Rademacher Complexity
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Appendix—Hoeffding's Lemma

Proof: Since f(X) = eX is a convex function, for any a € (0,1), we have
f(aa+ (1 — a)b) < af(a) + (1 — a)f(b). Therefore, for a < X < b, let
a=5=X then X = b—ab+ aa=aa+ (1—a)b, and we have:

e =f(X)
= f(aa+ (1 — a)b)
< af(a) + (1 — a)f(b) (12)

_b—X ta X_a tb
“h_aft + b—a®

Thus, using E[X] = 0:

b—X X —a b
E tX <E ta th| _ ta tb 13
[e }_ b—ale +b—ae b—ae b—ae (13)

Stratos: Hoeffding, Azuma, McDiarmid
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Appendix—Hoeffding's Lemma

Bt setting e?(t) = bTbaeta — et =t <b% - iet(b_a)>, we have:

P(t) =1In (eta (bﬁ a ﬁet(b—a)>> (14)

_ b a_ i(b-a)
—ta+|n<b_a Ee

For any t > 0, the first and second derivative of ¢(t) are given below:

t(b—a)
¢/(t) =a-— (L ae - et(b_a)) =a— (b_bae—t(b:) B L) (15)

b—a

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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—t(b—a)

(bTbae_t(b_a) _ ﬁ>2

_ B(L—p)e (b — a)?

- (1= B)et(b=a) 4 g)? (16)
B (1—B)e b= 2

T AT g) (- pe@arg) Y

= (1 — u)(b— a)?

where § = =%, and 1 = (= B)QE(HH 77+ Note that, $(0) = ¢/(0) = 0
and ¢"(0) = pu(1 — p)(b — a)?. Since u(1 — p) is upper bounded by 1/4,

b—a)?
we have ¢"(0) = u(1 — p)(b—a)® < ( = 2

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Thus, by the second order expansion of function ¢(t), there exists 6 € [0, t],
such that:

o(6) = 0(0) + /() + S0y < 222 (a7)

Therefore, we have
E [efx] < ) < T (18)
Here, we complete the proof. O

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Hoeffding's Inequality

Let Xi,---, X, be independent random variables with X; taking values
in [a;, b;] for all i € [m]. Then, for any € > 0, the following inequalities
hold for S, = >~ X;:
7262
P (S, — E[Sn] > €) < eXFalti=a)
(Sn ~ BlSn] 2 ) < 50 19
—2¢

P(E[Sm] — Sm > €) < eZ i (bi—a)?

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Proof: For any t > 0, we have
P(Sm B E[Sm] > 6) - P <et(5m7E[5m]) > ete)

E [et(sm_]E[Sm])]

<= ]

- (Markov's Inequality)
e

B [etz,f';l(x;—mx,-1>]

- ete (20)
iy f2(bi73i)2
e 8
< e (Hoeffding's Lemma)

=M 2 (bj—a))?
B E—

=€

In the last inequality, we apply Hoeffding's Lemma to each X; — E[X;] indi-
vidually since E[X; —E[Xj]] = 0. (Question? X; —E[Xi] € [a; — bj, bi — a;].)

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Since the above inequality holds for any t > 0, we can find the tightest
bound as:
> 2 (b —a;)?
P(Sm—E[Sm] >€) <infe" &

—262
— eXi(bi—2)°

where the optimal t* = ;,;1(4;73’_) . Here, we complete the proof. O

Mehryar Mohri et al, Foundations of Machine Learning, Second Edition.
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Hoeffding's Inequality applies to sums of independent random variables.
We will now develop its generalization to arbitrary real-valued functions of
independent random variables that satisfy a certain condition.

Let X be some set, and consider a function g : X7 — R. We say that g

has bounded differences if there exist nonnegative numbers ¢, - - - , ¢,, such
that:
sup g(Xla Crry Xie1, Xy Xig1, )Xn) — inf g(Xla Crry Xie1, Xy Xig1, 7Xn) <c¢
xeX xeX
(22)
forall i=1,---,nandall xq,---,Xj—1, Xi, Xi+1, - ,Xn € X. In words, if

we change the i-th variable while keeping all the others fixed, the value of
g will not change by more than c;.

Maxim Raginsky: Concentration inequalities.
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Appendix—McDiarmid’s Inequality

McDiarmid’s Inequality

Let X" = (X1, -+, Xm) € X" be an n-tuple of independent X-valued
random variables. If a function g : X" — R has bounded differences,
as in (22), then, for all € > 0,

—2¢2

P(g(X") ~ E[g(X")] = ¢) < e5a?

2

(23)

—2¢

P (E[g(X")] - g(X") > €) < e*lac

Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 85 /86



Tt et

Jianglin Lu (NEU) Jjianglinlu@outlook.com Learning with Label Noise 86 /86



	Preliminaries
	Statistically Inconsistent Classifiers
	Early Stopping
	Select Reliable Examples
	Correct Labels
	Add Regularization

	Statistically Consistent Classifiers
	Random Classification Noise (RCN)
	Class-Conditional Random Label Noise (CCN)
	Instance- and Label-Dependent Noise (ILN)

	Appendix

